精英家教網 > 初中數學 > 題目詳情
如圖,矩形ABCD的長AB=4cm,寬AD=2cm.O是AB的中點,OP⊥AB,兩半圓的直徑分別為AO與OB.拋物線的頂點是O,關于OP對稱且經過C、D兩點,則圖中陰影部分的面積是______cm2
觀察圖形,
根據二次函數的對稱性可得圖中陰影部分的面積是半圓的面積,
其半徑為AB的
1
4
,即半徑為1,易得其面積為
π
2

故答案為:
π
2
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

二次函數y=x2+bx+c的圖象如圖所示.
(1)求此二次函數的解析式;
(2)求此二次函數圖象與x軸的交點,當x滿足什么條件時,函數值y<0;
(3)把此拋物線向上平移多少個單位時,拋物線與x軸只有一個交點?并寫出平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:拋物線y=x2+2x-3與x軸的兩個交點分別為A、B,點A在點B的左側,與y軸交于點C,頂點為D,直線y=kx+b經過點A、C;
(1)求點D的坐標和直線AC的解析式;
(2)點P為拋物線上的一個動點,求使得△ACP的面積與△ACD的面積相等的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y=
1
2
x2+bx+c的圖象經過點A(-3,6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求這個二次函數的解析式,并在下面的坐標系中畫出該二次函數的圖象;
(2)設D為線段OC上的一點,滿足∠DPC=∠BAC,求點D的坐標;
(3)在x軸上是否存在一點M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

己知:如圖1,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(O,-4),與x軸交于A、B兩點,點A的坐標為(4,0).
(1)求該拋物線的函數解析式;
(2)點P(t,O)是線段AB上一動點(不與A、B重合),過P點作PEAC,交BC于E,連接CP,求△CPE的面積S與t的函數關系式,并指出t的取值范圍;
(3)如圖2,若平行于x軸的動直線r與該拋物線交于點Q,與直線AC交于F,點D的坐標為(2,0).問是否存在這樣的直線r,使得△0DF為等腰三角形?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=
3
3
x2+
2
3
3
x-
3
交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求點A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC,求E點的坐標;
(3)試判斷四邊形AEBC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

二次函數y=
2
3
x2的圖象如圖所示,點A0位于坐標原點,A1,A2,A3,…,A2010在y軸的正半軸上,B1,B2,B3,…,B2010在二次函數第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2009B2010A2010都為等邊三角形,請計算△A2009B2010A2010的邊長=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,拋物線y=-x2+2(m+1)x+m+3與x軸交于A,B兩點,若OA:OB=3:1,求m的值.______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+(6-
m2
)x+m-3與x軸有A、B兩個交點,且A、B兩點關于y軸對稱.
(1)求m的值;
(2)寫出拋物線解析式及頂點坐標;
(3)根據二次函數與一元二次方程的關系,將此題的條件換一種說法寫出來.

查看答案和解析>>

同步練習冊答案