二次函數(shù)y=
2
3
x2的圖象如圖所示,點A0位于坐標(biāo)原點,A1,A2,A3,…,A2010在y軸的正半軸上,B1,B2,B3,…,B2010在二次函數(shù)第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2009B2010A2010都為等邊三角形,請計算△A2009B2010A2010的邊長=______.
分別過B1,B2,B3作y軸的垂線,垂足分別為A、B、C,
設(shè)A0A1=a,A1A2=b,A2A3=c,則AB1=
3
2
a,BB2=
3
2
b,CB3=
3
2
c,
在正△A0B1A1中,B1
3
2
a,
a
2
),
代入y=
2
3
x2中,得
a
2
=
2
3
•(
3
2
a)2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2
3
2
b,1+
b
2
),
代入y=
2
3
x2中,得1+
b
2
=
2
3
•(
3
2
b)2,解得b=2,即A1A2=2,
在正△A2B3A3中,B3
3
2
c,3+
c
2
),
代入y=
2
3
x2中,得3+
c
2
=
2
3
•(
3
2
c)2,解得c=3,即A2A3=3,
由此可得△A2009B2010A2010的邊長=2010.
故答案為:2010.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當(dāng)t為何值時,PQ平行于y軸;
(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-x+c經(jīng)過點Q(-2,
3
2
),且它的頂點P的橫坐標(biāo)為-1.設(shè)拋物線與x軸相交于A、B兩點,如圖.
(1)求拋物線的解析式;
(2)求A、B兩點的坐標(biāo);
(3)設(shè)PB于y軸交于C點,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場調(diào)查分析,如果按每件50元銷售,一周能售出500件;若銷售單價每漲1元,每周銷售量就減少10件.設(shè)銷售單價為x元(x≥50),一周的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在超市對該種商品投入不超過10000元的情況下,要使得一周的銷售利潤達(dá)到8000元,銷售單價應(yīng)定為多少元?
(3)利用配方法,請你為超市估算一下,若要獲得最大利潤,一周應(yīng)進(jìn)貨多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD的長AB=4cm,寬AD=2cm.O是AB的中點,OP⊥AB,兩半圓的直徑分別為AO與OB.拋物線的頂點是O,關(guān)于OP對稱且經(jīng)過C、D兩點,則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+mx-m+2.
(Ⅰ)若拋物線與x軸的兩個交點A、B分別在原點的兩側(cè),并且AB=
5
,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點,若拋物線上存在關(guān)于原點對稱的兩點M、N,并且△MNC的面積等于27,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+2ax+a2+2的一部分如圖所示,求該拋物線在y軸左側(cè)與x軸的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案