【題目】如圖,點(diǎn)是直線上的一點(diǎn),將一直角三角板如圖擺放,過點(diǎn)作射線平分.當(dāng)直角三角板繞點(diǎn)O繼續(xù)順時(shí)針旋轉(zhuǎn)一周回到圖1的位置時(shí),在旋轉(zhuǎn)過程中你發(fā)現(xiàn)之間有怎樣的數(shù)量關(guān)系?

1)如圖1,當(dāng)時(shí),若,求的度數(shù);

2)如圖2,當(dāng)是鈍角時(shí),使得直角邊在直線的上方,若,其他條件不變,直接寫出的度數(shù);

3)若,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)之間有怎樣的數(shù)量關(guān)系?請(qǐng)你直接用含的代數(shù)式表示的度數(shù);

【答案】(1)20°;(2);(3)

【解析】

1)根據(jù)角平分線的作法作出OE平分∠BOC,先根據(jù)平角的定義求出∠BOC,再根據(jù)角平分線的定義求出∠COE,再根據(jù)直角的定義即可求解;
2)先根據(jù)平角的定義求出∠BOC,再根據(jù)角平分線的定義求出∠COE,再根據(jù)直角的定義即可求解;
3)分兩種情況:0°≤AOC≤180°,0°≤DOE≤180°,可求∠AOC與∠DOE之間的數(shù)量關(guān)系.

解:(1)∵∠AOC+BOC=180°,∠AOC=40°
∴∠BOC=140°,
OE平分∠BOC
∴∠COE=BOC 70°,
∵∠COD=90°
∴∠DOE=COD-COE=20°;

2)∵∠AOC+BOC=180°,∠AOC=160°,
∴∠BOC=180°-160°=20°
OE平分∠BOC,
∴∠COE=BOC=10°
∵∠COD=90°,
∴∠DOE=90°-10°=80°

3)當(dāng)OCAB上方時(shí),∠DOE的度數(shù)為

∵∠AOC=α,

∴∠BOC=180°-α

OE平分∠BOC,

∴∠COE=90°-

∴∠DOE=90°-90°-=,

同理:當(dāng)OCAB下方時(shí),∠DOE=180°-.

∴∠DOE=AOC=0°≤AOC≤180°),

DOE=180°-AOC=180°-0°≤DOE≤180°).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD關(guān)于y軸對(duì)稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.

(1)求反比例函數(shù)及直線BD的解析式;

(2)求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求完成下列題目

1)圖中有______塊小正方體;

2)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出它的主視圖、左視圖和俯視圖;

3)用小正方體搭一幾何體,使得它的俯視圖和主視圖與你在上圖方格中所畫的圖一致,若這樣的幾何體最少要個(gè)小正方體,最多要個(gè)小正方體,則的值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OB為∠AOC的平分線,OD是∠COE的平分線.

(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD為多少度?

(2)如果∠AOE=140°,∠COD=30°,那么∠AOB為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元,廠方開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方法:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶均按定價(jià)的90%付款。某商店到該服裝廠購(gòu)買西裝20件,領(lǐng)帶若干條.

1)領(lǐng)帶買多少條時(shí),兩種優(yōu)惠方法相同?

2)購(gòu)買50條領(lǐng)帶時(shí),應(yīng)采用哪一種方案更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD為菱形,△ABD的外接圓⊙O與CD相切于點(diǎn)D,交AC于點(diǎn)E.

(1)判斷⊙O與BC的位置關(guān)系,并說(shuō)明理由;

(2)若CE=2,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α0°<α<90°)角度,如圖2所示.

1)利用圖2證明AC=BDACBD;

2)當(dāng)BDCD在同一直線上(如圖3)時(shí),求AC的長(zhǎng)和α的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCA1B1C1是位似圖形.

(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(﹣6,﹣1),點(diǎn)C1的坐標(biāo)為(﹣3,2),則點(diǎn)B的坐標(biāo)為   ;

(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作AB2C2,使AB2C2ABC位似,且位似比為1:2;

(3)在圖上標(biāo)出ABCA1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為   ,計(jì)算四邊形ABCP的周長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1 ,一次函數(shù) (k,b為常數(shù),k≠0)的圖象與反比例函數(shù)(m為常數(shù),m≠0)的圖象相交于點(diǎn)M(1,4)和點(diǎn)N(4,n).

(1)填空:①反比例函數(shù)的解析式是     ; ②根據(jù)圖象寫出時(shí)自變量x的取值范圍是      ;

(2) 若將直線MN向下平移a(a>0)個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求a的值;

(3) 如圖2,函數(shù)的圖象(x>0)上有一個(gè)動(dòng)點(diǎn)C,若先將直線MN平移使它過點(diǎn)C,再繞點(diǎn)C旋轉(zhuǎn)得到直線PQ,PQ交軸于點(diǎn)A,交軸點(diǎn)B,若BC=2CA, 求OA·OB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案