【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于M(1,3),N兩點,點N的橫坐標為﹣3.
(1)根據圖象信息可得關于x的方程的解為 ;
(2)求一次函數(shù)的解析式.
【答案】(1)1或﹣3;(2).
【解析】
試題(1)方程的解即為一次函數(shù)圖象在反比例函數(shù)圖象交點的橫坐標,結合M、N點的橫坐標可得出答案.
(2)把點于M(1,3)代入反比例函數(shù),求出m的值,從而求出點N的坐標,再把M,N的坐標代入一次函數(shù)的解析式求出k和b的值即可.
試題解析:(1)方程的解即為一次函數(shù)圖象在反比例函數(shù)圖象交點的橫坐標,∵點M的橫坐標為1,點N的橫坐標為﹣3,∴關于x的方程的解為1或﹣3,故答案為1或﹣3;
(2)∵反比例函數(shù)的圖象與一次函數(shù)的圖象交于M(1,3),∴m=3,∴,∵點N的橫坐標為﹣3,∴點N的縱坐標為﹣1.,把M,N的坐標代入得:,解得:,∴.
科目:初中數(shù)學 來源: 題型:
【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點C到公路的距離為6m.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線的表達式;
(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計算說明這輛貨車能否安全通過這條隧道.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:經過三角形的一個頂點且將三角形的周長分成相等的兩部分的直線叫做該角形的“等周線”,“等周線”被這個三角形截得的線段叫做該三角形的“等周徑”.例如等腰三角形底邊上的中線即為它的“等周徑”Rt△ABC中,∠C=90°,AC=4,BC=3,若直線為△ABC的“等周線”,則△ABC的所有“等周徑”長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.
(1)求B點到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,O為坐標原點,拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(點A在點B的左側).
(1)求點A與點B的坐標;
(2)若a=,點M是拋物線上一動點,若滿足∠MAO不大于45°,求點M的橫坐標m的取值范圍.
(3)經過點B的直線l:y=kx+b與y軸正半軸交于點C.與拋物線的另一個交點為點D,且CD=4BC.若點P在拋物線對稱軸上,點Q在拋物線上,以點B,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,
以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以
算出圖1中所有圓圈的個數(shù)為1+2+3+…+n=.
如果圖中的圓圈共有13層,請解決下列問題:
(1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,……,則最底層最左
邊這個圓圈中的數(shù)是 ;
(2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20,……,求
最底層最右邊圓圈內的數(shù)是_______;
(3)求圖4中所有圓圈中各數(shù)的絕對值之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com