A. | 8-4$\sqrt{3}$ | B. | 4$\sqrt{3}$-6 | C. | 2$\sqrt{3}$-3 | D. | 4-2$\sqrt{3}$ |
分析 由于正方形紙片ABCD的邊長(zhǎng)為2,所以將正方形ABCD對(duì)折后AF=DF=1,由翻折不變性的原則可知AD=DH=2,AG=GH,在Rt△DFH中利用勾股定理可求出HF的長(zhǎng),進(jìn)而求出EH的長(zhǎng),再設(shè)EG=x,在Rt△EGH中,利用勾股定理即可求解.
解答 解:∵正方形紙片ABCD的邊長(zhǎng)為2,
∴將正方形ABCD對(duì)折后AE=DF=1,
∵△GDH是△GDA沿直線DG翻折而成,
∴AD=DH=2,AG=GH,
在Rt△DFH中,
HF=$\sqrt{H{D}^{2}-D{F}^{2}}=\sqrt{{2}^{2}-{1}^{2}}=\sqrt{3}$,
∴EH=2-$\sqrt{3}$,
在Rt△EGH中,設(shè)EG=x,則GH=AG=1-x,
∴GH2=EH2+EG2,
即(1-x)2=(2-$\sqrt{3}$)2+x2,
解得x=2$\sqrt{3}$-3.
故選C
點(diǎn)評(píng) 本題考查的是圖形翻折變換的性質(zhì),解答此類題目是最常用的方法是設(shè)所求線段的長(zhǎng)為x,再根據(jù)勾股定理列方程求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1>y2 | B. | y1=y2 | ||
C. | y1<y2 | D. | y1與y2的大小不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 喜 | B. | 歡 | C. | 我 | D. | 學(xué) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{AC}{AB}$ | B. | $\frac{AC}{BC}$ | C. | $\frac{BC}{AB}$ | D. | $\frac{BC}{AC}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com