【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù)是多項式的一次項系數(shù),是絕對值最小的整數(shù),單項式的次數(shù)為.

1= ,= ,= ;

2)若將數(shù)軸在點處折疊,則點與點 重合( 不能”)

3)點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向右運動,同時, 和點分別以每秒3個單位長度和2個單位長度的速度向左運動,秒鐘過后,若點與點B之間的距離表示為,點與點之間的距離表示為,則= , = (用含的代數(shù)式表示);

4)請問:AB+BC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.

【答案】1a= -4 ,b= 0,c=6;(2)不能 ;3B=t+4,BC= 3t + 6;4AB+BC的值是隨著時間t的變化而改變.

【解析】

1)根據(jù)多項式與單項式的概念即可求出答案;

2)根據(jù)a、b、c的值確定A、C是否關(guān)于點B對稱即可;

3)根據(jù)A、B、C三點的運動速度和運動方向可得;

4)將(3)中的ABBC的表達式代入即可判斷.

1多項式的一次項系數(shù)為-4,絕對值最小的整數(shù)是0,單項式的次數(shù)為6,

a=-4b=0,c=6;

2)不能重合,由-46的中點為1,故將數(shù)軸在點B出折疊,點A和點C不能重合;

3)由于點和點分別以每秒3個單位長度和2個單位長度的速度向左運動,

秒鐘過后,AB=3t+4-2t=t+4;

由于點以每秒1個單位長度的速度向右運動,

秒鐘過后,BC=2t+6+t=3t+6;

4AB+BC=(t+4)+(3t+6)=4t+10

所以,AB+BC的值是隨著時間t的變化而改變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017四川省達州市,第16題,3分)如圖,矩形ABCD中,EBC上一點,連接AE,將矩形沿AE翻折,使點B落在CDF處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙OAD相切于點P.若AB=6,BC=,則下列結(jié)論:①FCD的中點;②⊙O的半徑是2AE=CE;.其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,APB=CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3)若改變(2)中的條件,使∠APB=CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)將某班級畢業(yè)升學(xué)體育測試成績(滿分30分)統(tǒng)計整理,得到下表,則下列說法錯誤的是(  )

分?jǐn)?shù)

20

21

22

23

24

25

26

27

28

人數(shù)

2

4

3

8

10

9

6

3

1

A. 該組數(shù)據(jù)的眾數(shù)是24

B. 該組數(shù)據(jù)的平均數(shù)是25

C. 該組數(shù)據(jù)的中位數(shù)是24

D. 該組數(shù)據(jù)的極差是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點AB、C,請回答下列問題.

1A、BC三點分別表示 、 ;

2)將點B向左移動3個單位長度后,點B所表示的數(shù)是 ;

3)將點A向右移動4個單位長度后,點A所表示的數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2x軸上,依次進行下去.若點A(,0),B(0,2),則點B2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2﹣3=0.

(1)當(dāng)m取何值時,方程有兩個不相等的實數(shù)根?

(2)設(shè)x1、x2是方程的兩根,且x12+x22=22+x1x2,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7 9 日,滴滴發(fā)布北京市滴滴網(wǎng)約車價格調(diào)整,公布了新的滴滴快車計價規(guī)則,車費由總里程費+總時長費兩部分構(gòu)成,不同時段收費標(biāo)準(zhǔn)不同,具體收費標(biāo)準(zhǔn)如下表,如果車費不足起步價,則按起步價收費.

時間段

里程費(元/千米)

時長費(元/分鐘)

起步價(元)

06:00-10:00

1.80

0.80

14.00

10:00-17:00

1.45

0.40

13.00

17:00-21:00

1.50

0.80

14.00

21:00-6:00

2.15

0.80

14.00

(1)小明早上 7:10 乘坐滴滴快車上學(xué),行車?yán)锍?/span> 6 千米,行車時間 10 分鐘,則應(yīng)付車費多少元?

(2)小云 17:10 放學(xué)回家,行車?yán)锍?/span> 1 千米,行車時間 15 分鐘,則應(yīng)付車費多少元?

(3)下晚自習(xí)后小明乘坐滴滴快車回家,20:45 在學(xué)校上車,由于堵車,平均速度是 a 千米/小時,15 分鐘后走另外一條路回家,平均速度是 b 千米/小時,5 分鐘后到家,則他應(yīng)付車費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為引導(dǎo)學(xué)生廣泛閱讀文學(xué)名著,某校在七年級、八年級開展了讀書知識競賽.該校七、八年級各有學(xué)生400人,各隨機抽取20名學(xué)生進行了抽樣調(diào)查,獲得了他們知識競賽成績(分),并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.

七年級:

74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74

八年級:

76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91

平均數(shù)、中位數(shù)、眾數(shù)如表所示:

根據(jù)以上信息,回答下列問題:

1______,______,______;

2)該校對讀書知識競賽成績不少于80分的學(xué)生授予“閱讀小能手稱號,請你估計該校七、八年級所有學(xué)生中獲得“閱讀小能手”稱號的大約有______人;

3)結(jié)合以上數(shù)據(jù),你認(rèn)為哪個年級讀書知識競賽的總體成績較好,說明理由.

查看答案和解析>>

同步練習(xí)冊答案