在平面直角坐標(biāo)系中,二次函數(shù))的圖象與軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個動點(diǎn),當(dāng)時,點(diǎn)M關(guān)于x軸的對稱點(diǎn)都在直線l的下方,求m的取值范圍.
(1)證明見解析;(2);(3)

試題分析:(1)根據(jù)二次函數(shù)與一元二次方程的關(guān)系,要證明二次函數(shù)的圖象與x軸有兩個交點(diǎn),只要對應(yīng)的一元二次方程根的判別式大于0即可.
(2)求出直線AB的解析式,根據(jù)平移的性質(zhì)即可得直線l的解析式.
(3)求出點(diǎn)M關(guān)于x軸的對稱點(diǎn)所在的二次函數(shù)解析式,由其在直線l的下方求出m的取值范圍.
試題解析:(1)令,則
.
∵二次函數(shù)圖象與y軸正半軸交于A點(diǎn),
,且.
,∴.
.
∴該二次函數(shù)的圖象與x軸必有兩個交點(diǎn).
(2)令,解得:
由(1)得,故B的坐標(biāo)為(1,0).
又因?yàn)椤螦BO=45°,所以,即.
則可求得直線AB的解析式為.
再向下平移2個單位可得到直線
(3)由(2)得二次函數(shù)的解析式為
∵M(jìn)(p,q)為二次函數(shù)圖象上的一個動點(diǎn),
.
∴點(diǎn)M關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為.
∴點(diǎn)在二次函數(shù)上.
∵當(dāng)時,點(diǎn)M關(guān)于x軸的對稱點(diǎn)都在直線l的下方,
當(dāng)時,;當(dāng)時,.
結(jié)合圖象可知:,
解得:.
的取值范圍為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為   ;拋物線y=4x2對應(yīng)的碟寬為   ;拋物線y=ax2(a>0)對應(yīng)的碟寬為  ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為  
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn=  ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明動手做了一個質(zhì)地均勻、六個面完全相同的正方體,,分別標(biāo)有整數(shù)-2、-1、0、1、2、3,且每個面和它所相對的面的數(shù)字之和均相等,小明向上拋擲該正方體,落地后正方體正面朝上數(shù)字作為為點(diǎn)的橫坐標(biāo),將它所對的面的數(shù)字作為點(diǎn)的縱坐標(biāo),則點(diǎn)落在拋物線軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義1:在△ABC中,若頂點(diǎn)A,B,C按逆時針方向排列,則規(guī)定它的面積為“有向面積”;若頂點(diǎn)A,B,C按順時針方向排列,則規(guī)定它的面積的相反數(shù)為△ABC的“有向面積”.“有向面積”用表示,例如圖1中,,圖2中,.
定義2:在平面內(nèi)任取一個△ABC和點(diǎn)P(點(diǎn)P不在△ABC的三邊所在直線上),稱有序數(shù)組(,)為點(diǎn)P關(guān)于△ABC的“面積坐標(biāo)”,記作,例如圖3中,菱形ABCD的邊長為2,,則,點(diǎn)G關(guān)于△ABC的“面積坐標(biāo)”.在圖3中,我們知道,利用“有向面積”,我們也可以把上式表示為:.
應(yīng)用新知:
(1)如圖4,正方形ABCD的邊長為1,則        ,點(diǎn)D關(guān)于△ABC的“面積坐標(biāo)”是       ;探究發(fā)現(xiàn):
(2)在平面直角坐標(biāo)系中,點(diǎn)
①若點(diǎn)P是第二象限內(nèi)任意一點(diǎn)(不在直線AB上),設(shè)點(diǎn)P關(guān)于的“面積坐標(biāo)”為,
試探究之間有怎樣的數(shù)量關(guān)系,并說明理由;
②若點(diǎn)是第四象限內(nèi)任意一點(diǎn),請直接寫出點(diǎn)P關(guān)于的“面積坐標(biāo)”(用x,y表示);
解決問題:
(3)在(2)的條件下,點(diǎn),點(diǎn)Q在拋物線上,求當(dāng)的值最小時,點(diǎn)Q的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,則下列四個結(jié)論錯誤的是(  )
A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a(chǎn)﹣b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的頂點(diǎn)坐標(biāo)為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)-2≤x≤l時,二次函數(shù)有最大值4,則實(shí)數(shù)m的值為(  )
(A)     (B)   (c)2或  (D)2或

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下面說法錯誤的是( 。
A.直線y=x就是一、三象限的角平分線
B.反比例函數(shù)y=
2
x
的圖象經(jīng)過點(diǎn)(1,2)
C.函數(shù)y=3x-10中,y隨x的增大而減小
D.拋物線y=x2-2x+1的對稱軸是x=1

查看答案和解析>>

同步練習(xí)冊答案