小明動手做了一個(gè)質(zhì)地均勻、六個(gè)面完全相同的正方體,,分別標(biāo)有整數(shù)-2、-1、0、1、2、3,且每個(gè)面和它所相對的面的數(shù)字之和均相等,小明向上拋擲該正方體,落地后正方體正面朝上數(shù)字作為為點(diǎn)的橫坐標(biāo),將它所對的面的數(shù)字作為點(diǎn)的縱坐標(biāo),則點(diǎn)落在拋物線軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是      

試題分析:由條件分析可以得出P點(diǎn)的坐標(biāo)共有6中情況:(-1,2)、(-2,3)、(0,1)、(2,-1)、(1,0)、(3,-2),在求出拋物線y=-x2+6與x軸所圍成的區(qū)域內(nèi)(不含邊界)的是有可能情況,即可得到P落在拋物線內(nèi)的概率.
試題解析:∵正方體骰子(每個(gè)面的點(diǎn)數(shù)分別為-2、-1、0、1、2、3,且相對面的點(diǎn)數(shù)和相等,
∴P點(diǎn)的坐標(biāo)為::(-1,2)、(-2,3)、(0,1)、(2,-1)、(1,0)、(3,-2),
∵y=-x2+6,
令y=0,則x=-2或2,
∴與x軸所圍成的區(qū)域內(nèi)(不含邊界)取值范圍為:-2<x<2,
∴點(diǎn)P落在拋物線y=-x2+6與x軸所圍成的區(qū)域內(nèi)(不含邊界)有(-1,2)、(-2,0)、(0,1)、(2,-1)、(0,1),
點(diǎn)P落在拋物線y=-x2+6與x軸所圍成的區(qū)域內(nèi)(不含邊界)的概率=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:y=(x+m)2(m為常數(shù),m>0),平移拋物線y=﹣x2,使其頂點(diǎn)D在拋物線C1位于y軸右側(cè)的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,設(shè)點(diǎn)D的橫坐標(biāo)為a.

(1)如圖1,若m=
①當(dāng)OC=2時(shí),求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請說明理由;
(2)如圖2,當(dāng)OB=2﹣m(0<m<)時(shí),請直接寫出到△ABD的三邊所在直線的距離相等的所有點(diǎn)的坐標(biāo)(用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù))的圖象與軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個(gè)動點(diǎn),當(dāng)時(shí),點(diǎn)M關(guān)于x軸的對稱點(diǎn)都在直線l的下方,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線的函數(shù)關(guān)系式是                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).

(1)求拋物線的解析式;
(2)連接CD,在拋物線的對稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為-5,求拋物線的函數(shù)表達(dá)式;
(2)若在第一象限的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似,求的值;
(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動到D后停止. 當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動過程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果拋物線y=x2+6x+c的頂點(diǎn)在x軸上,那么c的值為(  )
A.0B.6C.3D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)y=2x2﹣1的圖象沿y軸向上平移2個(gè)單位,所得圖象對應(yīng)的函數(shù)表達(dá)式為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

蘇科版教材中有這樣一句話:“一般地,如果二次函數(shù)的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.”據(jù)此判斷方程x2-2x=-2實(shí)數(shù)根的情況是  (    )
A.有三個(gè)實(shí)數(shù)根B.有兩個(gè)實(shí)數(shù)根C.有一個(gè)實(shí)數(shù)根D.無實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊答案