【題目】下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )

A. B. C. D.

【答案】B

【解析】試題分析:根據(jù)勾股定理求出△ABC的三邊,并求出三邊之比,然后根據(jù)網(wǎng)格結(jié)構利用勾股定理求出三角形的三邊之比,再根據(jù)三邊對應成比例,兩三角形相似選擇答案.

解:根據(jù)勾股定理,AB==2,

BC==,

AC==

所以△ABC的三邊之比為2=12,

A、三角形的三邊分別為2,==3,三邊之比為23=3,故A選項錯誤;

B、三角形的三邊分別為2,4,=2,三邊之比為242=12,故B選項正確;

C、三角形的三邊分別為2,3,=,三邊之比為23,故C選項錯誤;

D、三角形的三邊分別為==,4,三邊之比為4,故D選項錯誤.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點B逆時針旋轉(zhuǎn)40°,得到A′B′C′,若點C′恰好落在邊BA的延長線上,且A′C′BC,連接CC′,則ACC′= 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:a+b=-3,ab=2,求下列各式的值:

(1)a2b+ab2;(2)a2+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】各邊長都是整數(shù),且最大邊長為8的三角形共有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;

(2)若AB=2,AD=4,求MD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,點D、E分別在邊BC、AC上,ADE=60°

(1)求證:ABD∽△DCE;

(2)如果AB=3,EC=,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,點O和ABC的頂點均為小正方形的頂點.

(1)以O為位似中心,在網(wǎng)格圖中作A′B′C′,使A′B′C′ABC位似,且位似比為1:2.

(2)連接(1)中的AA′,求四邊形AA′C′C的周長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式4x2﹣100=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列各式中,與(a﹣b)2一定相等的是(

A.a(chǎn)2+2ab+b2 B.a(chǎn)2﹣b2

C.a(chǎn)2+b2 D.a(chǎn)2﹣2ab+b2

查看答案和解析>>

同步練習冊答案