【題目】如圖,將△ABC繞點B逆時針旋轉(zhuǎn)40°,得到△A′B′C′,若點C′恰好落在邊BA的延長線上,且A′C′∥BC,連接CC′,則∠ACC′= 度.
【答案】30
【解析】
試題分析:先利用旋轉(zhuǎn)的性質(zhì)得∠CAC′=40°,BC=BC′,∠ACB=∠A′C′B,由于A′C′∥BC,則利用平行線的性質(zhì)得∠A′C′B=∠CAC′=40°,所以∠ACB=40°,接著利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理可計算出∠BCC′=70°,然后計算BCC′﹣∠ACB即可.
解:∵△ABC繞點B逆時針旋轉(zhuǎn)40°,
∴∠CAC′=40°,BC=BC′,∠ACB=∠A′C′B,
∵A′C′∥BC,
∴∠A′C′B=∠CAC′=40°,
∴∠ACB=40°,
∵BC=BC′,
∴∠BCC′=∠BC′C,
∴∠BCC′=(180°﹣40°)=70°,
∴∠ACC′=∠BCC′﹣∠ACB=70°﹣40°=30°.
故答案為30.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車向南行駛10千米記作10千米,那么汽車向北行駛10千米記作( )
A.0千米 B.﹣10千米 C.﹣20千米 D.10千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點坐標(biāo)分別是A(0,6),B(-3,-3),C(1,0),將△ABC平移后頂點A的對應(yīng)點A1的坐標(biāo)是(4,10),求點B的對應(yīng)點B1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次體育達(dá)標(biāo)測試中,小明所在小組的六位同學(xué)的立定跳遠(yuǎn)成績?nèi)缦拢▎挝唬簃):2.00,2.11,2.21,2.15,2.20,2.17,那么這組數(shù)據(jù)的中位數(shù)是( ).
A.2.16 B.2.15 C.2.14 D.2.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接元旦小長假的購物高峰,黃興南路步行街某運動品牌專賣店購進(jìn)甲、乙兩種服裝,現(xiàn)此商店同時賣出甲、乙兩種服裝各一件,每件售價都為240元,其中一件賺了20%,另一件虧了20%,那么這個商店賣出這兩件服裝總體的盈虧情況是( )
A.賺了12元 B.虧了12元 C.賺了20元 D.虧了20元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標(biāo);
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com