【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線aAB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

【答案】C

【解析】

根據(jù)等邊對(duì)等角可得∠ACB=B=75°,再根據(jù)三角形外角的性質(zhì)可得∠AED=∠1-∠A=115°,繼而根據(jù)平行線的性質(zhì)即可求得答案.

AB=AC,∠A=30°,

∠ACB=B=(180°-30°)÷2=75°

∠1=∠A+∠AED,

∠AED=∠1-∠A=145°-30°=115°,

∵a//b,

∴∠2+ACB=∠AED=115°(兩直線平行,同位角相等),

∠2=115°-∠ACB=115°-75°=40°,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b2a2+b2,ab之間的等量關(guān)系.______;

3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)圖形驗(yàn)證:

a+b)(a+2b=a2+3ab+2b2

4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:a+b=5a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018120日,山西迎來了復(fù)興號(hào)列車,與和諧號(hào)相比,復(fù)興號(hào)列車時(shí)速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復(fù)興號(hào)”G92次列車平均每小時(shí)比某列和諧號(hào)列車多行駛40千米,其行駛時(shí)間是該列和諧號(hào)列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外).經(jīng)查詢,復(fù)興號(hào)”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復(fù)興號(hào)”G92次列車從太原南到北京西需要多長時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購買裝備所花的費(fèi)用;

(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)MCD邊上,點(diǎn)N在正方形ABCD外部,且滿足∠CMN90°,CMMN.連接AN,CN,取AN的中點(diǎn)E,連接BE,AC,交于F點(diǎn).

1 ①依題意補(bǔ)全圖形;②求證:BEAC

2)設(shè)AB1,若點(diǎn)M沿著線段CD從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D,則在該運(yùn)動(dòng)過程中,線段EN所掃過的面積為 (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中每個(gè)小正方形邊長都是1.

(1)畫出ABC關(guān)于直線1對(duì)稱的圖形A1BlCl;

(2)在直線l上找一點(diǎn)P,使PB=PC;(要求在直線1上標(biāo)出點(diǎn)P的位置)

(3)連接PA、PC,計(jì)算四邊形PABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥ABAB的延長線于D.

(1)求證:CD⊙O的切線;

(2)E的中點(diǎn),F⊙O上一點(diǎn),EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+4(k≠0)與y軸交于點(diǎn)A.直線y=﹣2x+1與直線y=kx+4(k≠0)交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B的橫坐標(biāo)為﹣1.

(1)求點(diǎn)B的坐標(biāo)及k的值;

(2)直線y=﹣2x+1與直線y=kx+4y軸所圍成的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在圖1中的位置時(shí),則有結(jié)論:SPBC=SPAC+SPCD

理由:過點(diǎn)PEF垂直BC,分別交AD、BCE、F兩點(diǎn).

SPBC+SPAD=BCPF+ADPE=BC(PF+PE)=BCEF=S矩形ABCD

(1)請(qǐng)補(bǔ)全以上證明過程.

(2)請(qǐng)你參考上述信息,當(dāng)點(diǎn)P分別在圖1、圖2中的位置時(shí),SPBC、SPAC、SPCD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你對(duì)上述兩種情況的猜想,并選擇其中一種情況的猜想給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案