【題目】已知函數(shù)y=ax2與直線y=2x﹣3的圖象交于點A(1,b).
(1)求a,b的值;
(2)求兩函數(shù)圖象另一交點B的坐標.
【答案】(1)a=﹣1,b=﹣1(2)(﹣3,﹣9)
【解析】(1)要求出b的值,只需要將點A的坐標代入一次函數(shù)關系式,如此即可求出b的值;由b的值即可求出點A的坐標,然后代入y=ax2中,從而即可求出a的值;
(2只需要將兩個函數(shù)關系式聯(lián)立,解方程組即可得出交點B坐標.
(1)解:函數(shù)y=ax2與直線y=2x﹣3的圖象交于點A(1,b), ∴A(1,b)代入y=2x﹣3 得 b=2×1﹣3=﹣1,
∴A(1,﹣1),
∴﹣1=a12 , 解得a=﹣1,
∴a=﹣1,b=﹣1
(2)解:依題意得 , 解得 , .
故兩函數(shù)圖象另一交點B的坐標為(﹣3,﹣9)
科目:初中數(shù)學 來源: 題型:
【題目】 請同學們觀察以下三個等式,并結合這些等式,回答下列問題.
(1)請你再寫出另外兩個符合上述規(guī)律的算式:______,______;
(2)觀察上述算式,我們發(fā)現(xiàn):如果設兩個連續(xù)奇數(shù)分別為2n-1和2n+1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù).請用含n的式子說明上述規(guī)律的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年東營市教育局在全市中小學開展了“情系疏勒書香援疆”捐書活動,200多所學校的師生踴躍參與,向新疆疏勒縣中小學共捐贈愛心圖書28.5萬余本.某學校學生社團對本校九年級學生所捐圖書進行統(tǒng)計,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表中所提供的信息解答下列問題:
圖書種類 | 頻數(shù)(本) | 頻率 |
名人傳記 | 175 | a |
科普圖書 | b | 0.30 |
小說 | 110 | c |
其他 | 65 | d |
(1)求該校九年級共捐書多少本;
(2)統(tǒng)計表中的a= ,b= ,c= ,d= ;
(3)若該校共捐書1500本,請估計“科普圖書”和“小說”一共多少本;
(4)該社團3名成員各捐書1本,分別是1本“名人傳記”,1本“科普圖書”,1本“小說”,要從這3人中任選2人為受贈者寫一份自己所捐圖書的簡介,請用列表法或樹狀圖求選出的2人恰好1人捐“名人傳記”,1人捐“科普圖書”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是線段AB的中點,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求證:△ACD≌△BCE;
(2)若∠D=75°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負):
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車________ 輛;
(2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車______輛;
(3)該廠實行每日計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務,則超過部分每輛另獎勵15元;少生產(chǎn)一輛另扣20元,那么該廠工人這一周的工資總額是多少?
(4)若將上面第(3)問中“實行每日計件工資制”改為“實行每周計件工資制”,其他條件不變,在此方式下這一周工人的工資與按日計件的工資哪一個更多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,當一個點到達終點時另一個點也停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設運動時間為t秒,則當t=______秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是CE的中點,△BCF和△CDG都是等邊三角形,點M為AE的中點,連接FG.
(1)如圖1,若點E在AC的延長線上,點M與點C重合,則△FMG 等邊三角形(填“是”或“不是”)
(2)將圖1中的CE縮短,得到圖2.求證:△FMG為等邊三角形;
(3)將圖2中的CE繞點E順時針旋轉一個銳角,得到圖3.求證:△FMG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解決數(shù)學問題時,我們一般先仔細讀題干,找出有用信息作為已知條件,然后用這些信息解決問題,但是有的題目信息比較明顯,我們把這樣的信息稱為顯性條件,而有的信息不太明顯需要結合圖形,特殊式子成立的條件,實際問題等發(fā)現(xiàn)隱含信息作為條件,這樣的條件稱為隱含條件,所以我們在做題時更注意發(fā)現(xiàn)題目中的隱含條件
(閱讀理解)
讀下面的解題過程,體會加何發(fā)現(xiàn)隱含條件,并回答.
化簡:.解:隱含條件1-3x≥0,解得:x,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x
(啟發(fā)應用)
已知△ABC三條邊的長度分別是,記△ABC的周長為C△ABC
(1)當x=2時,△ABC的最長邊的長度是______(請直接寫出答案).
(2)請求出C△ABC(用含x的代數(shù)式表示,結果要求化簡).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com