【題目】A、B、C三地在同一直線上,甲、乙兩車分別從AB兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設兩車之間的距離為y(千米),甲行駛的時間x(小時).yx的關系如圖所示,則BC兩地相距_____千米.

【答案】1320

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求得甲乙兩車的速度,再根據(jù)“路程=速度×時間”,即可解答本題.

解:設甲車的速度為a千米/小時,乙車的速度為b千米/小時,

,解得

∴A、B兩地的距離為:80×9720千米,

設乙車從B地到C地用的時間為x小時,

60x801+10%)(x+29),

解得,x22,

B、C兩地相距:60×221320(千米)

故答案為:1320

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點分別為(﹣1,0),(30),對于下列結論:①2a+b=0;②abc0;③a+b+c0;④當x1時,yx的增大而減。黄渲姓_的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過B點作BM⊥AC于點E,交CD于點M,過D點作DN⊥AC于點F,交AB于點N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】無論m取什么實數(shù),點A(m+1,2m﹣2)都在直線l上.若點B(a,b)是直線l上的動點,則(2a﹣b﹣6)3的值等于____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點A,與y軸交于點B

1)求A、B兩點的坐標;

2)若點P(mn)為線段AB上的一個動點(A、B不重合),作PEx軸于點E,PFy軸于點F,連接EF,若△PEF的面積為S,求S關于m的函數(shù)關系式,并寫出m的取值范圍;

3)以上(2)中的函數(shù)圖象是一條直線嗎?請嘗試作圖驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過點,點,交y軸于點C,給出下列結論::b::2:3;,則對于任意實數(shù)m,一定有一元二次方程的兩根為,其中正確的結論是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點上的一點,連接,作于點

1)如圖1,當時,求證:;

2)如圖2,作于點,當時,求證:;

3)在(2)的條件下,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中, ADBCEF垂直平分AC,交AC于點F,交BC于點E,且AE=AB

1)若∠BAE40°,求∠C的度數(shù);

2)若ABC周長26cm,AC10cm,求DC長.

查看答案和解析>>

同步練習冊答案