【題目】如圖,過(guò)點(diǎn)的直線(xiàn)與一次函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn).

1)求的坐標(biāo)及直線(xiàn)的函數(shù)表達(dá)式;

2)求直線(xiàn)軸的交點(diǎn)的坐標(biāo);

3的圖象與軸的交點(diǎn),求四邊形的面積.

【答案】1B1,2),直線(xiàn)的函數(shù)表達(dá)式為:;(2)(30);(3.

【解析】

1)將x=1代入即可求出的坐標(biāo),根據(jù)AB的坐標(biāo)利用待定系數(shù)法可求出直線(xiàn)的函數(shù)表達(dá)式;

2)令直線(xiàn)解析式中y=0,求出x即可;

3)求出點(diǎn)D坐標(biāo),然后根據(jù)四邊形的面積=計(jì)算即可.

解:(1)當(dāng)x=1時(shí),,

B12),

由函數(shù)圖象得:A點(diǎn)坐標(biāo)為(0,3),

A03),B1,2)代入得:,

解得:,

∴直線(xiàn)的函數(shù)表達(dá)式為:;

2)令,解得:x=3,

∴直線(xiàn)軸的交點(diǎn)的坐標(biāo)為:(3,0);

3)在中,當(dāng)x=0時(shí),

D0,1),

A0,3),B1,2),C3,0),

∴四邊形的面積=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,動(dòng)點(diǎn)、分別以、的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動(dòng).

若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)隨點(diǎn)的停止而停止移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間、兩點(diǎn)之間的距離是?

若點(diǎn)沿著移動(dòng),點(diǎn)、分別從點(diǎn)同時(shí)出發(fā),點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止時(shí),點(diǎn)隨點(diǎn)的停止而停止移動(dòng),試探求經(jīng)過(guò)多長(zhǎng)時(shí)間的面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABCD中,,,,射線(xiàn)AE平分動(dòng)點(diǎn)P的速度沿AD向終點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)PAE于點(diǎn)Q,過(guò)點(diǎn)P,過(guò)點(diǎn)Q,交PM于點(diǎn)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數(shù)式表示

當(dāng)點(diǎn)M落在CD上時(shí),求t的值.

St之間的函數(shù)關(guān)系式.

如圖2,連結(jié)AM,交PQ于點(diǎn)G,連結(jié)AC、BD交于點(diǎn)H,直接寫(xiě)出t為何值時(shí),GH與三角形ABD的一邊平行或共線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市高中招生體育考試前教育部門(mén)為了解全市初三男生考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),對(duì)全市部分初三男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類(lèi):A.實(shí)心球(2kg);B.立定跳遠(yuǎn);C.50米跑;D.半場(chǎng)運(yùn)球;E.其他.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題

(1)本次調(diào)查的總?cè)藬?shù)為

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)假定全市初三畢業(yè)學(xué)生中有5500名男生,試估計(jì)全市初三男生中選“50米跑的人數(shù)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°DAB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連結(jié)AEDE、DC

①求證:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】常用的分解因式的方法有提取公因式法、公式法,但有更多的多項(xiàng)式只用上述方法就無(wú)法分解,如,我們細(xì)心觀(guān)察這個(gè)式子就會(huì)發(fā)現(xiàn),前兩項(xiàng)符合平方差公式,后兩項(xiàng)可提取公因式,前后兩部分分別分解因式后會(huì)產(chǎn)生公因式,然后提取公因式就可以完成整個(gè)式子的分解因式了,過(guò)程為:,這種分解因式的方法叫分組分解法,利用這種方法解決下列問(wèn)題.

(1)分解因式:

(2)△ABC三邊ab、c滿(mǎn)足,判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,在平面直角坐標(biāo)系中,點(diǎn)M是二次函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)M軸,如果二次函數(shù)的圖象與關(guān)于l成軸對(duì)稱(chēng),則稱(chēng)關(guān)于點(diǎn)M的伴隨函數(shù)如圖2,在平面直角坐標(biāo)系中,二次函數(shù)的函數(shù)表達(dá)式是,點(diǎn)M是二次函數(shù)圖象上一點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,二次函數(shù)關(guān)于點(diǎn)M的伴隨函數(shù).

的函數(shù)表達(dá)式.

點(diǎn),在二次函數(shù)的圖象上,若a的取值范圍為______

過(guò)點(diǎn)M軸,

如果,線(xiàn)段MN的圖象交于點(diǎn)P,且MP3,求m的值.

如圖3,二次函數(shù)的圖象在MN上方的部分記為,剩余的部分沿MN翻折得到,由所組成的圖象記為.以、為頂點(diǎn)在x軸上方作正方形直接寫(xiě)出正方形ABCDG有三個(gè)公共點(diǎn)時(shí)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠A=45°CDAB于點(diǎn)D,點(diǎn)P在線(xiàn)段DB上,若AP2-PB2=48,則△PCD的面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)的中點(diǎn),點(diǎn)是線(xiàn)段的延長(zhǎng)線(xiàn)上的一動(dòng)點(diǎn),連接,過(guò)點(diǎn)的平行線(xiàn),與線(xiàn)段的延長(zhǎng)線(xiàn)交于點(diǎn),連接

求證:四邊形是平行四邊形.

,則在點(diǎn)的運(yùn)動(dòng)過(guò)程中:

①當(dāng)________時(shí),四邊形是矩形,試說(shuō)明理由;

②當(dāng)________時(shí),四邊形是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案