【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表. 調(diào)查結(jié)果統(tǒng)計表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2


請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有人,a+b= , m=;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).

【答案】
(1)50;28;8
(2)解:扇形統(tǒng)計圖中扇形C的圓心角度數(shù)是360°× =144°
(3)解:每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù)是1000× =560(人)
【解析】解:(1)調(diào)查的總?cè)藬?shù)是16÷32%=50(人), 則b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,
A組所占的百分比是 =8%,則m=8.
a+b=8+20=28.
故答案是:50,28,8;
(1)根據(jù)B組的頻數(shù)是16,對應(yīng)的百分比是32%,據(jù)此求得調(diào)查的總?cè)藬?shù),利用百分比的意義求得b,然后求得a的值,m的值;(2)利用360°乘以對應(yīng)的比例即可求解;(3)利用總?cè)藬?shù)1000乘以對應(yīng)的比例即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個正比例函數(shù)的圖象分別對應(yīng)表達(dá)式:①y=ax,②y=bx,③y=cx,將a,b,c從小到大排列并用“<”連接為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b 的圖象l與坐標(biāo)軸分別交于點(diǎn)E、F,與雙曲線y=- (x<0)(x<0)交于點(diǎn)P(﹣1,n),且F 是PE 的中點(diǎn),直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實(shí)數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y= 的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有(
A.①②
B.③④
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,直線y=﹣ x+3與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P、Q同時從點(diǎn)A出發(fā),運(yùn)動時間為t秒.其中點(diǎn)P沿射線AB運(yùn)動,速度為每秒4個單位長度,點(diǎn)Q沿射線AO運(yùn)動,速度為每秒5個單位長度.以點(diǎn)Q為圓心,PQ長為半徑作⊙Q.

(1)求證:直線AB是⊙Q的切線;
(2)過點(diǎn)A左側(cè)x軸上的任意一點(diǎn)C(m,0),作直線AB的垂線CM,垂足為M.若CM與⊙Q相切于點(diǎn)D,求m與t的函數(shù)關(guān)系式(不需寫出自變量的取值范圍);
(3)在(2)的條件下,是否存在點(diǎn)C,直線AB、CM、y軸與⊙Q同時相切?若存在,請直接寫出此時點(diǎn)C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).

(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)探究證明
把△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;

(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證. (以上材料來源于《古證復(fù)原的原理》、《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)
請根據(jù)該圖完成這個推論的證明過程.

證明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC , = , =
可得S矩形NFGD=S矩形EBMF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點(diǎn)P在以C為圓心,5為半徑的圓上,連結(jié)PA,PB.若PB=4,則PA的長為

查看答案和解析>>

同步練習(xí)冊答案