【題目】如圖,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過(guò)D作DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)作DG⊥AB交⊙O于G,垂足為F,若∠A=30°,AB=8,求弦DG的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
試題(1)連接OD,只要證明OD⊥DE即可.本題可根據(jù)等腰三角形中兩底角相等,將相等的角進(jìn)行適當(dāng)?shù)霓D(zhuǎn)換,即可證得OD⊥DE;
(2)求DG就是求DF的長(zhǎng),在直角三角形DFO中,有OD的值,∠DOF的值也容易求得,那么DG的值就求得了.
試題解析:(1)證明:連接OD,
∵OA=OD,
∴∠A=∠ADO.
∵BA=BC,
∴∠A=∠C,
∴∠ADO=∠C,
∴DO∥BC.
∵DE⊥BC,
∴DO⊥DE.
∵點(diǎn)D在⊙O上,
∴DE是⊙O的切線.
(2)解:∵∠DOF=∠A+∠ADO=60°,
在Rt△DOF中,OD=4,
∴DF=ODsin∠DOF=4sin60°=2.
∵直徑AB⊥弦DG,
∴DF=FG.
∴DG=2DF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點(diǎn)D在BC上,AB與CE相交于點(diǎn)F
(1) 如圖1,直接寫(xiě)出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點(diǎn)G,在BC的延長(zhǎng)線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點(diǎn)C旋轉(zhuǎn)至△A′B′C′的位置,使點(diǎn)B′落在∠ACB的角平分線上,A′B′與AC相交于點(diǎn)D,那么線段CD的長(zhǎng)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車(chē)先到達(dá)小觀景平臺(tái)DE觀景,然后再由E處繼續(xù)乘坐纜車(chē)到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,點(diǎn)D、E、F是⊙O上三個(gè)點(diǎn),EF//AB,若EF=2,則∠EDC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長(zhǎng)是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為邊上的中線,點(diǎn)在上,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交的延長(zhǎng)線于點(diǎn),點(diǎn)在上,且,連接.
(1)依題意補(bǔ)全圖形;
(2)求證:;
(3)若平分,則與滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com