【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

【答案】(1)k>﹣;(2)k=3.

【解析】1)根據(jù)方程的系數(shù)結(jié)合根的判別式>0,即可得出關(guān)于k的一元一次方程,解之即可得出k的取值范圍;

(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=﹣2k﹣3、x1x2=k2,結(jié)合=﹣1即可得出關(guān)于k的分式方程,解之經(jīng)檢驗(yàn)即可得出結(jié)論.

1)∵關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根,

∴△=(2k+3)2﹣4k2>0,

解得:k>﹣;

(2)x1、x2是方程x2+(2k+3)x+k2=0的實(shí)數(shù)根,

x1+x2=﹣2k﹣3,x1x2=k2,

=﹣1,

解得:k1=3,k2=﹣1,

經(jīng)檢驗(yàn),k1=3,k2=﹣1都是原分式方程的根,

又∵k>﹣,

k=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=BC,以AB為直徑的⊙OAC于點(diǎn)D,過(guò)DDEBC,垂足為E.

(1)求證:DE是⊙O的切線;

(2)DGAB交⊙OG,垂足為F,若∠A=30°,AB=8,求弦DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“書(shū)香學(xué)校,書(shū)香班級(jí)”的建設(shè)號(hào)召,平頂山市某中學(xué)積極行動(dòng),學(xué)校圖書(shū)角的新書(shū)、好書(shū)不斷增加.下面是隨機(jī)抽查該校若干名同學(xué)捐書(shū)情況統(tǒng)計(jì)圖:

請(qǐng)根據(jù)下列統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)此次隨機(jī)調(diào)查同學(xué)所捐圖書(shū)數(shù)的中位數(shù)是   ,眾數(shù)是   ;

2)在扇形統(tǒng)計(jì)圖中,捐2本書(shū)的人數(shù)所占的扇形圓心角是多少度?

3)若該校有在校生1600名學(xué)生,估計(jì)該校捐4本書(shū)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAB與OCD是以點(diǎn)O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點(diǎn)B的坐標(biāo)是(6,0),則點(diǎn)C的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷(xiāo)售商準(zhǔn)備在南充采購(gòu)一批絲綢,經(jīng)調(diào)查,用10000元采購(gòu)A型絲綢的件數(shù)與用8000元采購(gòu)B型絲綢的件數(shù)相等,一件A型絲綢進(jìn)價(jià)比一件B型絲綢進(jìn)價(jià)多100元.

(1)求一件A型、B型絲綢的進(jìn)價(jià)分別為多少元?

(2)若銷(xiāo)售商購(gòu)進(jìn)A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設(shè)購(gòu)進(jìn)A型絲綢m件.

求m的取值范圍.

已知A型的售價(jià)是800元/件,銷(xiāo)售成本為2n元/件;B型的售價(jià)為600元/件,銷(xiāo)售成本為n元/件.如果50≤n≤150,求銷(xiāo)售這批絲綢的最大利潤(rùn)w(元)與n(元)的函數(shù)關(guān)系式(每件銷(xiāo)售利潤(rùn)=售價(jià)﹣進(jìn)價(jià)﹣銷(xiāo)售成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一群女生住間宿舍,每間住4人,剩下18人無(wú)房住,每間住6人,有一間宿舍住不滿,但有學(xué)生。

1)用含的代數(shù)式表示女生人數(shù).

2)根據(jù)題意,列出關(guān)于的不等式組,并求不等式組的解集.

3)根據(jù)(2)的結(jié)論,問(wèn)一共可能有多少間宿舍,多少名女生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點(diǎn)O,則線段AO的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EF分別是AD、BC的中點(diǎn),分別連接BEDF、BD

1)求證:△AEB≌△CFD;

2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的弦,點(diǎn)P是優(yōu)弧AB上的一個(gè)動(dòng)點(diǎn),連接AP,過(guò)點(diǎn)A作AP的垂線,交PB的延長(zhǎng)線于點(diǎn)C.

(1)如圖1,AC與⊙O相交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交PC于點(diǎn)E,若DE∥AB,求證:PA=PB;

(2)如圖2,已知⊙O的半徑為2,AB=2

①當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),∠C的度數(shù)為   °;

②當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),△ABP的面積隨之變化,求△ABP面積的最大值;

③當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),△ABC的面積隨之變化,△ABC的面積的最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案