【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.
(1)請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

【答案】
(1)解:所有可能出現(xiàn)的結果如圖:

從表格可以看出,總共有9種結果,每種結果出現(xiàn)的可能性相同,其中兩人抽取相同數(shù)字的結果有3種,所以兩人抽取相同數(shù)字的概率為


(2)解:不公平.

從表格可以看出,兩人抽取數(shù)字和為2的倍數(shù)有5種,兩人抽取數(shù)字和為5的倍數(shù)有3種,所以甲獲勝的概率為 ,乙獲勝的概率為

∴甲獲勝的概率大,游戲不公平


【解析】(1)根據(jù)列表法和概率的定義列式即可;(2)根據(jù)概率的意義分別求出甲、乙獲勝的概率,從而得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】菲爾茲獎是國際上有崇高聲譽的一個數(shù)學獎項,下面的數(shù)據(jù)是從1936年至2014年菲爾茲獎得主獲獎時的年齡(歲): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
請根據(jù)上述數(shù)據(jù),解答下列問題:
小彬按“組距為5”列出了如圖的頻數(shù)分布表

分組

頻數(shù)

A:25~30

B:30~35

15

C:35~40

31

D:40~45

合計

56


(1)每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖;
(2)根據(jù)(1)中的頻數(shù)分布直方圖描述這56位菲爾茲獎得主獲獎時的年齡的分布特征;
(3)在(1)的基礎上,小彬又畫了如圖所示的扇形統(tǒng)計圖,圖中獲獎年齡在30~35歲的人數(shù)約占獲獎總人數(shù)的%(百分號前保留1位小數(shù));C組所在扇形對應的圓心角度數(shù)約為°(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y1= 的圖象與一次函數(shù)y2= x的圖象交于點A、B,點B的橫坐標是4,點P(1,m)在反比例函數(shù)y1= 的圖象上.
(1)求反比例函數(shù)的表達式;
(2)觀察圖象回答:當x為何范圍時,y1>y2;
(3)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字,然后回答問題.

已知在平面內兩點P1(x1,y1)、P2(x2,y2),其兩點間的距離P1P2=,同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.

(1)已知A(2,4)、B(-3,-8),試求A、B兩點間的距離;

(2)已知A、B在平行于y軸的直線上,點A的縱坐標為4,點B的縱坐標為-1,試求A、B兩點間的距離;

(3)已知一個三角形各頂點坐標為D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;

(4)平面直角坐標中,在x軸上找一點P,使PD+PF的長度最短,求出點P的坐標以及PD+PF的最短長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點O逆時針旋轉至圖2,使點NOC的反向延長線上,請直接寫出圖中∠MOB的度數(shù);

(2)將圖1中的三角尺繞點O逆時針旋轉至圖3,使一邊OM∠BOC的內部,且恰好平分∠BOC,求∠CON的度數(shù);

(3)將圖1中的三角尺繞點O順時針旋轉至圖4,使ON∠AOC的內部,請?zhí)骄?/span>∠AOM∠NOC之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B,E在線段CD∠C=∠D,則添加下列條件不一定能使△ABC≌△EFD的是( )

A. BC=FD,AC=ED B. ∠A=∠DEF,AC=ED

C. AC=ED,AB=EF D. ∠ABC=∠EFD,BC=FD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】騎自相車旅行越來越受到人們的喜愛,順風車行經(jīng)營的A型車2016年4月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售比去年增加400元,若今年4月份與去年4月份賣出的A型車數(shù)量相同,則今年4月份A型車銷售總額將比去年4月份銷售總額增加25%. A、B兩種型號車的進貨和銷售價格如表:

A型車

B型車

進貨價格(元/輛)

1100

1400

銷售價格(元/輛)

今年的銷售價格

2400


(1)求今年4月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計劃5月份新進一批A型車和B型車共50輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上A、B兩點所表示的數(shù)分別為-2和8.

(1)求線段AB的長;

(2)若P為射線BA上的一點(點P不與A、B兩點重合,MPA的中點,NPB的中點,當點P在射線BA上運動時;MN的長度是否發(fā)生改變?若不變,請你畫出圖形,并求出線段MN的長;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.現(xiàn)有 a 根長度相同的火柴棒,按如圖 1 擺放時可擺成 m 個正方形,按如圖 2擺放時可擺成 2n 個正方形.

(1)試分別用含 m,n 的代數(shù)式表示 a;

(2)若這 a 根火柴棒按如圖 3 擺放時還可擺成 3p 個正方形.

試問 p 的值能取 8 嗎?請說明理由.

試求 a 的最小值.

查看答案和解析>>

同步練習冊答案