【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,OD⊥AC,垂足為D點(diǎn),直線OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線OD上,連接PA,PB,PC,且滿足∠PCA=∠ABC
(1)求證:PA=PC;
(2)求證:PA是⊙O的切線;
(3)若BC=8,,求DE的長(zhǎng).
【答案】(1)詳見解析;(2)詳見解析;(3)DE=8.
【解析】
(1)根據(jù)垂徑定理可得AD=CD,得PD是AC的垂直平分線,可判斷出PA=PC;
(2)由PC=PA得出∠PAC=∠PCA,再判斷出∠ACB=90°,得出∠CAB+∠CBA=90°,再判斷出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出結(jié)論;
(2)根據(jù)AB和DF的比設(shè)AB=3a,DF=2a,先根據(jù)三角形中位線可得OD=4,從而得結(jié)論.
(1)證明∵OD⊥AC,
∴AD=CD,
∴PD是AC的垂直平分線,
∴PA=PC,
(2)證明:由(1)知:PA=PC,
∴∠PAC=∠PCA.
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°.
又∵∠PCA=∠ABC,
∴∠PCA+∠CAB=90°,
∴∠CAB+∠PAC=90°,即AB⊥PA,
∴PA是⊙O的切線;
(3)解:∵AD=CD,OA=OB,
∴OD∥BC,OD=BC==4,
∵,
設(shè)AB=3a,DF=2a,
∵AB=EF,
∴DE=3a﹣2a=a,
∴OD=4=﹣a,
a=8,
∴DE=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點(diǎn),F是BC延長(zhǎng)線上一點(diǎn),∠F=∠B.
(l)若AB=1O,求FD的長(zhǎng);
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程.
已知:直線和直線外一點(diǎn).
求作:直線的垂線,使它經(jīng)過.
作法:如圖2.
(1)在直線上取一點(diǎn),連接;
(2)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于,兩點(diǎn),連接交于點(diǎn);
(3)以點(diǎn)為圓心,為半徑作圓,交直線于點(diǎn)(異于點(diǎn)),作直線.所以直線就是所求作的垂線.
請(qǐng)你寫出上述作垂線的依據(jù):______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長(zhǎng)方形ABCD(每個(gè)內(nèi)角都是90°)的頂點(diǎn)的坐標(biāo)分別是A(0,m),B(n,0),(m>n>0),點(diǎn)E在AD上,AE=AB,點(diǎn)F在y軸上,OF=OB,BF的延長(zhǎng)線與DA的延長(zhǎng)線交于點(diǎn)M,EF與AB交于點(diǎn)N.
(1)試求點(diǎn)E的坐標(biāo)(用含m,n的式子表示);
(2)求證:AM=AN;
(3)若AB=CD=12cm,BC=20cm,動(dòng)點(diǎn)P從B出發(fā),以2cm/s的速度沿BC向C運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)Q從C出發(fā),以vcm/s的速度沿CD向D運(yùn)動(dòng),是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進(jìn)某種水果成本為20元/,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)(元/)與時(shí)間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷售量()與時(shí)間(天)的關(guān)系如下表:
時(shí)間(天) | 1 | 3 | 6 | 10 | 20 | … |
日銷售量() | 118 | 114 | 108 | 100 | 80 | … |
(1)已知與之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;
(2)哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司承接A、B兩種貨物運(yùn)輸業(yè)務(wù),已知3月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元;4月份由于工人工資上漲,運(yùn)費(fèi)單價(jià)上漲情況為:A貨物運(yùn)費(fèi)單價(jià)增加了40%,B貨物運(yùn)費(fèi)單價(jià)上漲到40元/噸;該物流公司4月承接的A種貨物和B種貨物的數(shù)量與3月份相同,4月份共收取運(yùn)費(fèi)13000元.試求該物流公司3月份運(yùn)輸A、B兩種貨物各多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以邊長(zhǎng)為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線AC于點(diǎn)E.
(1)線段AE= ;
(2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點(diǎn)F.
①當(dāng)α=30°時(shí),請(qǐng)求出線段AF的長(zhǎng);
②當(dāng)α=60°時(shí),求出線段AF的長(zhǎng);判斷此時(shí)DM與⊙O的位置關(guān)系,并說明理由;
③當(dāng)α= °時(shí),DM與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測(cè),2019年我市豬肉售價(jià)將逐月上漲,每千克豬肉的售價(jià)y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價(jià)y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤(rùn)為w(元),求w與x之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所第獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖所示,已知二次函數(shù)的圖象正好經(jīng)過坐標(biāo)原點(diǎn),對(duì)稱軸為直線.給出以下四個(gè)結(jié)論:①;②;③;④.正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com