【題目】如圖1,以邊長(zhǎng)為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線AC于點(diǎn)E

1)線段AE= 

2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使RtADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為αα150°),旋轉(zhuǎn)過程中AD與⊙O交于點(diǎn)F

①當(dāng)α=30°時(shí),請(qǐng)求出線段AF的長(zhǎng);

②當(dāng)α=60°時(shí),求出線段AF的長(zhǎng);判斷此時(shí)DM與⊙O的位置關(guān)系,并說明理由;

③當(dāng)α=   °時(shí),DM與⊙O相切.

【答案】14;(2)①4,②相離,見解析,③90

【解析】

1)連接BE,則可得出AEB是等腰直角三角形,再由AB=8,可得出AE的長(zhǎng).

2)①連接OAOF,可判斷出OAF是等邊三角形,從而可求出AF的長(zhǎng);②此時(shí)可得DAM=30°,根據(jù)AD=8可求出AF的長(zhǎng),也可判斷DM與⊙O的位置關(guān)系;③根據(jù)AD等于⊙O的直徑,可得出當(dāng)DM與⊙O相切時(shí),點(diǎn)D在⊙O上,從而可得出α的度數(shù).

解:(1)連接BE

AC是正方形ABCD的對(duì)角線,

∴∠BAC=45°

∴△AEB是等腰直角三角形,

又∵AB=8

AE=4;

2)連接OAOF,

由題意得,∠NAD=30°,∠DAM=30°

故可得∠OAM=30°,∠DAM=30°

則∠OAF=60°,

又∵OA=OF

∴△OAF是等邊三角形,

OA=4

AF=OA=4;

連接B'F,此時(shí)∠NAD=60°,

AB'=8,∠DAM=30°,

AF=AB'cosDAM=8×=4

此時(shí)DM與⊙O的位置關(guān)系是相離;

AD=8,直徑的長(zhǎng)度相等,

∴當(dāng)DM與⊙O相切時(shí),點(diǎn)D在⊙O上,

故此時(shí)可得α=NAD=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)(1)班的小華和小紅兩名學(xué)生10次數(shù)學(xué)測(cè)試成績(jī)?nèi)缦卤恚ū?/span>I)所示:

小花

70

80

90

80

70

90

80

100

60

80

小紅

90

80

100

60

90

80

90

60

60

90

現(xiàn)根據(jù)上表數(shù)據(jù)進(jìn)行統(tǒng)計(jì)得到下表(表):

姓名

平均成績(jī)

中位數(shù)

眾數(shù)

小華

80

小紅

80

90

1)填空:根據(jù)表I的數(shù)據(jù)完成表中所缺的數(shù)據(jù);

2)老師計(jì)算了小紅的方差請(qǐng)你計(jì)算小華的方差并說明哪名學(xué)生的成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)課外活動(dòng)小組的同學(xué).利用所學(xué)的數(shù)學(xué)知識(shí),測(cè)底部可以到達(dá)的學(xué)校操場(chǎng)上的旗桿AB高度,他們采用了如下兩種方法:

方法1:在地面上選一點(diǎn)C,測(cè)得CB40米,用高為1.6米的測(cè)角儀在C處測(cè)得旗桿頂部A的仰角為28°;

方法2:在相同時(shí)刻測(cè)得旗桿AB的影長(zhǎng)為17.15米,又測(cè)得已有的2米高的竹桿的影長(zhǎng)為1.5米.

你認(rèn)為這兩種方法可行嗎?若可行,請(qǐng)你任選一種方法算出旗桿高度(精確到0.1米)若不可行,自己另設(shè)計(jì)一種測(cè)量方法(旗桿頂端不能到達(dá)),算出旗桿高度(結(jié)果可用字母表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是△ABC的外接圓,AB是直徑,ODAC,垂足為D點(diǎn),直線ODO相交于E,F兩點(diǎn),PO外一點(diǎn),P在直線OD上,連接PA,PB,PC,且滿足∠PCA=∠ABC

1)求證:PAPC

2)求證:PAO的切線;

3)若BC8,,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)微信推出了紅包游戲,它有多種玩法,其中一種為拼手氣紅包,用戶設(shè)好總金額以及紅包個(gè)數(shù)后,可以生成不等金額的紅包,現(xiàn)有一用戶發(fā)了三個(gè)拼手氣紅包,總金額為3元,隨機(jī)被甲、乙、丙三人搶到.

1)下列事件中,確定事件是  ,①丙搶到金額為1元的紅包;②乙搶到金額為4元的紅包;③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多

2)記金額最多、居中、最少的紅包分別為A,B,C.求甲搶到紅包A,乙搶到紅包C的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備開春季運(yùn)動(dòng)會(huì),學(xué)校要給學(xué)生買若干筆袋和筆記本作為獎(jiǎng)品.購(gòu)買2個(gè)筆袋和1個(gè)筆記本需花25元,購(gòu)買3個(gè)筆袋和2個(gè)筆記本需花40.

1)求筆袋和筆記本的單價(jià)各是多少元?

2)學(xué)校準(zhǔn)備購(gòu)買筆袋和筆記本共計(jì)180個(gè),甲、乙兩商場(chǎng)以同樣價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案,在甲商場(chǎng)累計(jì)購(gòu)物超過1000元后,超出1000元的部分按90%收費(fèi),在乙商場(chǎng)累計(jì)購(gòu)物超過500元后,超出500元的部分按95%收費(fèi),經(jīng)過預(yù)算此次購(gòu)物超過了1000元,求學(xué)校需要至少購(gòu)買多少個(gè)筆袋,才能使到甲商場(chǎng)購(gòu)物更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩名同學(xué)在一次用頻率估計(jì)概率的試驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制出統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的試驗(yàn)可能是(

A.拋一枚硬幣,正面朝上的概率

B.擲一枚正六面體的骰子,出現(xiàn)點(diǎn)的概率

C.轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤,轉(zhuǎn)到數(shù)字為奇數(shù)的概率

D.從裝有個(gè)紅球和個(gè)藍(lán)球的口袋中任取一個(gè)球恰好是藍(lán)球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了提高學(xué)生的綜合素質(zhì),成立了以下社團(tuán):.機(jī)器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個(gè)社團(tuán).為了解學(xué)生參加社團(tuán)的情況,從加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中圖所占扇形的圓心角為

根據(jù)以上信息,解答下列問題:

這次被調(diào)查的學(xué)生共有   人;

請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

若該校共有學(xué)生加入了社團(tuán),請(qǐng)你估計(jì)這名學(xué)生中有多少人參加了羽毛球社團(tuán);

在機(jī)器人社團(tuán)活動(dòng)中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,MOA的中點(diǎn),弦CDAB于點(diǎn)M,連接AD,點(diǎn)EBC上,∠CDE45°,DEAB于點(diǎn)F,CD6

1)求∠OAD的度數(shù);

2)求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案