【題目】某校準(zhǔn)備開(kāi)春季運(yùn)動(dòng)會(huì),學(xué)校要給學(xué)生買若干筆袋和筆記本作為獎(jiǎng)品.購(gòu)買2個(gè)筆袋和1個(gè)筆記本需花25元,購(gòu)買3個(gè)筆袋和2個(gè)筆記本需花40元.
(1)求筆袋和筆記本的單價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買筆袋和筆記本共計(jì)180個(gè),甲、乙兩商場(chǎng)以同樣價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案,在甲商場(chǎng)累計(jì)購(gòu)物超過(guò)1000元后,超出1000元的部分按90%收費(fèi),在乙商場(chǎng)累計(jì)購(gòu)物超過(guò)500元后,超出500元的部分按95%收費(fèi),經(jīng)過(guò)預(yù)算此次購(gòu)物超過(guò)了1000元,求學(xué)校需要至少購(gòu)買多少個(gè)筆袋,才能使到甲商場(chǎng)購(gòu)物更省錢?
【答案】(1)筆袋單價(jià)為10元,筆記本單價(jià)為5元;(2)學(xué)校需要購(gòu)買至少121個(gè)筆袋才能使到甲商場(chǎng)購(gòu)買更省錢.
【解析】
(1)設(shè)筆袋單價(jià)為元,筆記本單價(jià)為元,根據(jù)“購(gòu)買2個(gè)筆袋和1個(gè)筆記本需花25元,購(gòu)買3個(gè)筆袋和2個(gè)筆記本需花40元”可列出二元一次方程組,解方程組即可得出答案.
(2)設(shè)學(xué)校需要購(gòu)買個(gè)筆袋才能使到甲商場(chǎng)購(gòu)買更省錢;則學(xué)校需要購(gòu)買個(gè)筆記本,根據(jù)“在甲商場(chǎng)累計(jì)購(gòu)物超過(guò)1000元后,超出1000元的部分按90%收費(fèi),在乙商場(chǎng)累計(jì)購(gòu)物超過(guò)500元后,超出500元的部分按95%收費(fèi),經(jīng)過(guò)預(yù)算此次購(gòu)物超過(guò)了1000元”列出一元一次不等式,解之即可得出的取值范圍,進(jìn)而得出的最小整數(shù)值.
(1)解:設(shè)筆袋單價(jià)為元,筆記本單價(jià)為元。
解得:
答:筆袋單價(jià)為10元,筆記本單價(jià)為5元.
(2)設(shè)學(xué)校需要購(gòu)買個(gè)筆袋才能使到甲商場(chǎng)購(gòu)買更省錢;則學(xué)校需要購(gòu)買個(gè)筆記本;
學(xué)校購(gòu)買兩種物品共需花費(fèi)元
∵經(jīng)過(guò)預(yù)算此次購(gòu)物超過(guò)了1000元
∵
解得:
根據(jù)題意可列式為:
解得:
∵為正整數(shù)
∴最小值為121
答;學(xué)校需要購(gòu)買至少121個(gè)筆袋才能使到甲商場(chǎng)購(gòu)買更省錢.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為培育青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛形,如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)、,以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程與時(shí)間滿足關(guān)系,乙以的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為.
(1)甲運(yùn)動(dòng)后的路程是多少?
(2)甲、乙從開(kāi)始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開(kāi)始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長(zhǎng)方形ABCD(每個(gè)內(nèi)角都是90°)的頂點(diǎn)的坐標(biāo)分別是A(0,m),B(n,0),(m>n>0),點(diǎn)E在AD上,AE=AB,點(diǎn)F在y軸上,OF=OB,BF的延長(zhǎng)線與DA的延長(zhǎng)線交于點(diǎn)M,EF與AB交于點(diǎn)N.
(1)試求點(diǎn)E的坐標(biāo)(用含m,n的式子表示);
(2)求證:AM=AN;
(3)若AB=CD=12cm,BC=20cm,動(dòng)點(diǎn)P從B出發(fā),以2cm/s的速度沿BC向C運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)Q從C出發(fā),以vcm/s的速度沿CD向D運(yùn)動(dòng),是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司承接A、B兩種貨物運(yùn)輸業(yè)務(wù),已知3月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元;4月份由于工人工資上漲,運(yùn)費(fèi)單價(jià)上漲情況為:A貨物運(yùn)費(fèi)單價(jià)增加了40%,B貨物運(yùn)費(fèi)單價(jià)上漲到40元/噸;該物流公司4月承接的A種貨物和B種貨物的數(shù)量與3月份相同,4月份共收取運(yùn)費(fèi)13000元.試求該物流公司3月份運(yùn)輸A、B兩種貨物各多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以邊長(zhǎng)為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線AC于點(diǎn)E.
(1)線段AE= ;
(2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過(guò)程中AD與⊙O交于點(diǎn)F.
①當(dāng)α=30°時(shí),請(qǐng)求出線段AF的長(zhǎng);
②當(dāng)α=60°時(shí),求出線段AF的長(zhǎng);判斷此時(shí)DM與⊙O的位置關(guān)系,并說(shuō)明理由;
③當(dāng)α= °時(shí),DM與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是對(duì)角線上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),連接過(guò)點(diǎn)作,交直線于點(diǎn).作交直線于點(diǎn),連接.
(1)由題意易知,,觀察圖,請(qǐng)猜想另外兩組全等的三角形 ; ;
(2)求證:四邊形是平行四邊形;
(3)已知,的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測(cè),2019年我市豬肉售價(jià)將逐月上漲,每千克豬肉的售價(jià)y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價(jià)y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤(rùn)為w(元),求w與x之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所第獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是唐初作為“算學(xué)”教科書(shū)的著名的《算經(jīng)十書(shū)》之一,共三卷,上卷敘述算籌記數(shù)的制度和乘除法則,中卷舉例說(shuō)明籌算分?jǐn)?shù)法和開(kāi)平方法,都是了解中國(guó)古代籌算的重要資料,下卷收集了一些算術(shù)難題,“雞兔同籠”便是其中一題.下卷中還有一題,記載為:“今有甲乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八.問(wèn)甲、乙二人持錢各幾何?”意思是:“甲、乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文.如果乙得到甲所有錢的,那么乙也共有錢48文.問(wèn)甲、乙二人原來(lái)各有多少錢?”設(shè)甲原有錢x文,乙原有錢y文,可得方程組( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論
①2a﹣b=0;
②a+b+c=0;
③當(dāng)m≠﹣1時(shí),a﹣b>am2+bm;
④當(dāng)△ABC是等腰直角三角形時(shí),a=;
⑤若D(0,3),則拋物線的對(duì)稱軸直線x=﹣1上的動(dòng)點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長(zhǎng)最小值為3,其中,正確的個(gè)數(shù)為( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com