【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸正半軸上,點A與原點重合,點D的坐標是 (3,4),反比例函數y=(k≠0)經過點C,則k的值為( 。
A.12B.15C.20D.32
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD,對角線AC、BD相交于點O,AC=6,BD=8.點E是AB邊上一點,求作矩形EFGH,使得點F、G、H分別落在邊BC、CD、AD上.設 AE=m.
(1)如圖①,當m=1時,利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個數及對應的m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點.
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點 F 為 AD 上一點,AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.
①請判斷“勻稱中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉45°得到△ADE,點B的對應點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,射線AN上有一點B,AB=5,tan∠MAN=,點C從點A出發(fā)以每秒3個單位長度的速度沿射線AN運動,過點C作CD⊥AN交射線AM于點D,在射線CD上取點F,使得CF=CB,連結AF.設點C的運動時間是t(秒)(t>0).
(1)當點C在點B右側時,求AD、DF的長.(用含t的代數式表示)
(2)連結BD,設△BCD的面積為S平方單位,求S與t之間的函數關系式.
(3)當△AFD是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2﹣4ax﹣6(a>0)與x軸交于A,B兩點,且OB=3OA,與y軸交于點C,拋物線的頂點為D,對稱軸與x軸交于點E.
(1)求該拋物線的解析式,并直接寫出頂點D的坐標;
(2)如圖2,直線y=+n與拋物線交于G,H兩點,直線AH,AG分別交y軸負半軸于M,N兩點,求OM+ON的值;
(3)如圖1,點P在線段DE上,作等腰△BPQ,使得PB=PQ,且點Q落在直線CD上,若滿足條件的點Q有且只有一個,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線過,兩點.
備用圖1 備用圖2
(1)求該拋物線的解析式;
(2)點是拋物線上一點,且位于第一象限,當的面積為6時,求點的坐標;
(3)在線段右側的拋物線上是否存在一點,使得分的面積為兩部分?存在,求出點的坐標;不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com