【題目】如圖,拋物線過,兩點(diǎn).
備用圖1 備用圖2
(1)求該拋物線的解析式;
(2)點(diǎn)是拋物線上一點(diǎn),且位于第一象限,當(dāng)的面積為6時,求點(diǎn)的坐標(biāo);
(3)在線段右側(cè)的拋物線上是否存在一點(diǎn),使得分的面積為兩部分?存在,求出點(diǎn)的坐標(biāo);不存在,請說明理由.
【答案】(1)拋物線的表達(dá)式為:;(2)點(diǎn)的坐標(biāo)為:或; (3)點(diǎn)的坐標(biāo)為.
【解析】
(1)根據(jù)拋物線y=ax2+bx過A(5,0),B(1,4)兩點(diǎn),可以求得該拋物線的解析式;
(2) 過點(diǎn)作直線軸交點(diǎn),設(shè),則,分當(dāng)點(diǎn)在上方時和當(dāng)點(diǎn)在下方時,列方程求解即可;
(3) 設(shè)交于點(diǎn),分當(dāng)或時,由三角形相似,列方程求解即可.
(1)將點(diǎn)的坐標(biāo)代入拋物線表達(dá)式,
得:,
解得:,
所以拋物線的表達(dá)式為:
(2)求得直線的表達(dá)式為:;
過點(diǎn)作直線軸交點(diǎn),如圖,
設(shè),
則.
當(dāng)點(diǎn)在上方時,
,
,
解得,
即
當(dāng)點(diǎn)在下方時,
,
,
解得,(舍去),
即
綜上,點(diǎn)的坐標(biāo)為:或;
(3)由(2)得直線的表達(dá)式為:;
令,則,
即直線交軸于點(diǎn).
設(shè)交于點(diǎn),如圖,
當(dāng)或時,
則分的面積為
軸交點(diǎn),
,
.
①當(dāng)時,,
由(2)得:,
即,
解得,
即.
②當(dāng)時,,
由(2)得:,
即,所得方程無解.
綜上所述:點(diǎn)的坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸正半軸上,點(diǎn)A與原點(diǎn)重合,點(diǎn)D的坐標(biāo)是 (3,4),反比例函數(shù)y=(k≠0)經(jīng)過點(diǎn)C,則k的值為( 。
A.12B.15C.20D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號為A,B,C,D的四張卡片(除編號和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.
(1)從中隨機(jī)抽取一張,求剛好抽到“共享服務(wù)”的概率.
(2)從中隨機(jī)抽取一張(不放回),再從中隨機(jī)抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以為圓心,半徑為的圓與反比例函數(shù)的圖象交于,兩點(diǎn),則點(diǎn)到軸的距離為_____________,的長度為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于兩點(diǎn),點(diǎn)位于、之間,與軸交于點(diǎn),對稱軸為直線,直線與拋物線交于兩點(diǎn),點(diǎn)在軸上方且橫坐標(biāo)小于5,則下列結(jié)論:①;②;③(其中為任意實(shí)數(shù));④,其中正確的是( )
A.①②③④B.①②③C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=x2﹣x﹣2的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的圖形是函數(shù)y=|x2﹣x﹣2|的圖象,已知過點(diǎn)D(0,4)的直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點(diǎn),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條路同時從學(xué)校出發(fā)到某超市購物,學(xué)校與超市的路程是4千米.小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)超市.圖中折線O﹣A﹣B﹣C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在超市購物的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系式;
(3)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果公司購進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計,部分結(jié)果如下表:
蘋果總質(zhì)量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質(zhì)量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結(jié)果保留小數(shù)點(diǎn)后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估計這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(﹣2,0),B(8,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OA,拋物線的對稱軸x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上位于對稱軸右側(cè)的一個動點(diǎn),設(shè)點(diǎn)P點(diǎn)的橫坐標(biāo)為m,且S△CDP=S△ABC,求m的值;
(3)K是拋物線上一個動點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)H,使B、C、K、H為頂點(diǎn)的四邊形成為矩形?若存在,直接寫出點(diǎn)H的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com