【題目】(題文)用一條長為18cm細繩圍成一個等腰三角形.
(1)如果腰長是底邊的2倍,那么各邊的長是多少?
(2)能圍成有一邊的長為4cm的等腰三角形嗎?為什么?
【答案】(1)各邊長為:cm,cm,cm.(2)能構(gòu)成有一邊長為4cm的等腰三角形,另兩邊長為7cm,7cm.
【解析】
試題(1)設(shè)底邊長為xcm,則腰長為2xcm,根據(jù)周長公式列一元一次方程,解方程即可求得各邊的長;
(2)題中沒有指明4cm所在邊是底還是腰,故應(yīng)該分情況進行分析,注意利用三角形三邊關(guān)系進行檢驗.
解:(1)設(shè)底邊長為xcm,
∵腰長是底邊的2倍,
∴腰長為2xcm,
∴2x+2x+x=18,解得,x=cm,
∴2x=2×=cm,
∴各邊長為:cm,cm,cm.
(2)①當(dāng)4cm為底時,腰長==7cm;
當(dāng)4cm為腰時,底邊=18﹣4﹣4=10cm,
∵4+4<10,
∴不能構(gòu)成三角形,故舍去;
∴能構(gòu)成有一邊長為4cm的等腰三角形,另兩邊長為7cm,7cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 為等邊三角形,D、E 分別是邊 AC、BC 上的點,且AD=CE,AE 與 BD 相交于點 P.
(1)求∠BPE 的度數(shù);
(2)若 BF⊥AE 于點 F,試判斷 BP 與 PF 的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴大銷售增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價一元,市場每天可多售件,問他降價多少元時,才能使每天所賺的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶網(wǎng)店銷售臺燈,成本為每個元.銷售大數(shù)據(jù)分析表明:當(dāng)每個臺燈售價為元時,平均每月售出個;若售價每上漲元,其月銷售量就減少個,若售價每下降元,其月銷售量就增加個.
若售價上漲元,每月能售出________個臺燈.
為迎接“雙十一”,該網(wǎng)店決定降價促銷,在庫存為個臺燈的情況下,若預(yù)計月獲利恰好為元,求每個臺燈的售價.
在庫存為個臺燈的情況下,若預(yù)計月獲利恰好為元,直接寫出每個臺燈的售價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=6,AB=10,則DE的長為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點M、N分別從點A. 點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當(dāng)點N第一次到達B點時,M、N同時停止運動.
(1)點M、N運動_________秒后,△AMN是等邊三角形?
(2)點M、N在BC邊上運動時,運動_______秒后得到以MN為底邊的等腰三角形△AMN?
(3)M、N同時運動幾秒后,△AMN是直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于F,若∠F=30°,DE=1,則EF的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com