直線l∥m,A、B為l上兩定點(diǎn),C、D為直線m上的兩點(diǎn),且CD=AB,當(dāng)線段CD在直線m上左、右移動(dòng)時(shí),凸四邊形ABCD的面積

[  ]

A.變大
B.變小
C.不變
D.不能確定
答案:C
解析:

AB∥CD,AB=CD

則四邊形ABCD是平形四邊形

所以無論四邊形ABCD的邊CD如何移動(dòng),其長度不變,高為直線AB和CD的距離,所以其面積都是底邊乘以高

所以其面積不變

故選C


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(-2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點(diǎn)為C,求△OCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A和B(4,0),與y軸交于點(diǎn)C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點(diǎn)作⊙O′與y軸的負(fù)半軸交于點(diǎn)D,求經(jīng)過原點(diǎn)O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個(gè)交點(diǎn)為P,直線OE與直線BC的交點(diǎn)為Q,直線x=m與拋物線的交點(diǎn)為R,直線x=m與直線OE的交點(diǎn)為S.是否存在整數(shù)m,使得以點(diǎn)P、Q、R、S為頂點(diǎn)的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、在△ABC中,AD是中線,O為AD的中點(diǎn),直線a過點(diǎn)O,過A、B、C三點(diǎn)分別作直線a的垂線,垂足分別為G、E、F,當(dāng)直線a繞點(diǎn)O旋轉(zhuǎn)到與AD垂直時(shí)(如圖1),易證:BE+CF=2AG,
當(dāng)直線a繞點(diǎn)O旋轉(zhuǎn)到與AD不垂直時(shí),在圖2、圖3兩種情況下,線段BE、CF、AG又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對圖3的猜想給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)如圖,在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+2ax+c的圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(-3,0)
(1)求二次函數(shù)的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)M是第二象限內(nèi)拋物線上的一動(dòng)點(diǎn),若直線OM把四邊形ACDB分成面積為1:2的兩部分,求出此時(shí)點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是第二象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:點(diǎn)P在何處時(shí)△CPB的面積最大?最大面積是多少?并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B,C,E點(diǎn)在一條直線上,△ABC、△DCE均為等邊三角形,連接AE、DB.
(1)猜想AE與BD的大小關(guān)系,說明理由;
(2)如果把△DCE繞點(diǎn)C旋轉(zhuǎn)一個(gè)角度,(1)的結(jié)論還成立嗎?畫圖說明.

查看答案和解析>>

同步練習(xí)冊答案