【題目】如圖,⊙O的直徑AB4cm,點C為線段AB上一動點,過點CAB的垂線交⊙O于點D,E,連結AD,AE.設AC的長為xcmADE的面積為ycm2

小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小東的探究過程,請補充完整:

1)確定自變量x的取值范圍是   

2)通過取點、畫圖、測量、分析,得到了yx的幾組對應值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

y/cm2

0

0.7

1.7

2.9

   

4.8

5.2

4.6

0

3)如圖,建立平面直角坐標系xOy,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

4)結合畫出的函數(shù)圖象,解決問題:當ADE的面積為4cm2時,AC的長度約為   cm

【答案】(1)0x4.(24;(3)見解析;(42.03.7

【解析】

(1)由題意易得x取值范圍.

(2)當x=2時,點C與點O重合,此時DE是直徑進行計算即可.

.(3)根據(jù)(2)的數(shù)值畫出圖像.

(4)觀察圖象可知:當ADE的面積為4cm2時,AC的長度約為2.0或3.7cm.

解:(1)由題意:0≤x≤4;

故答案為:0≤x≤4

2)當x2時,點C與點O重合,此時DE是直徑,y×4×24

故答案為4

3)函數(shù)圖象如圖所示:

(4)觀察圖象可知:當ADE的面積為4cm2時,AC的長度約為2.0或3.7cm

故答案為2.03.7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校開展以素質(zhì)提升為主題的研學活動,推出了以下四個項目供學生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導游;D.植物識別.學校規(guī)定:每個學生都必須報名且只能選擇其中一個項目.八年級(3)班班主任寧老師對全

班學生選擇的項目情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖中的信息,解決下列問題:

(1)八年級(3)班學生總人數(shù)是多少,并將條形統(tǒng)計圖補充完整;

(2)寧老師發(fā)現(xiàn)報名參加“植物識別”的學生中恰好有兩名男生,現(xiàn)準備從這組學生中任意挑選兩名擔任活動記錄員,那么恰好選1名男生和1名女生擔任活動記錄員的概率;

(3)若學校學生總人數(shù)為2000人,根據(jù)八年級(3)班的情況,估計全校報名軍事競技的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有三張分別畫有正三角形、平行四邊形、菱形圖案的卡片,它們除圖案外完全相同,把卡片背面朝上洗勻,從中隨機抽取一張后放回,再背面朝上洗勻,從中隨機抽取一張,則兩次抽出的每一張卡片的圖案既是軸對稱圖形又是中心對稱圖形的概率是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一張簡易活動餐桌,測得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腳的張角∠COD的度數(shù)大小應為( )

A. 100° B. 120° C. 135° D. 150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代有著輝煌的數(shù)學成就,《周髀算經(jīng)》,《九章算術》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國古代數(shù)學的重要文獻.

1)小聰想從這4部數(shù)學名著中隨機選擇1部閱讀,則他選中《九章算術》的概率為   ;

2)某中學擬從這4部數(shù)學名著中選擇2部作為數(shù)學文化校本課程學習內(nèi)容,求恰好選中《九章算術》和《孫子算經(jīng)》的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx2x

(1)在平面直角坐標系內(nèi),畫出該二次函數(shù)的圖象;

(2)根據(jù)圖象寫出:x   時,y>0;

0<x<4時,y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓上有A、B、C三點,直線l與圓相切于點A,CD平分∠ACB,且與l交于點D,若=80°,=60°,則∠ADC的度數(shù)為(  )

A. 80° B. 85° C. 90° D. 95°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°試判斷BE、EFFD之間的數(shù)量關系.

【發(fā)現(xiàn)證明】小聰把ABE繞點A逆時針旋轉90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足  關系時,仍有EF=BE+FD;請證明你的結論.

【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BCCD上分別有景點E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,AD是⊙O的直徑,OPOAAB于點P,過點B的直線交OP的延長線于點C,且CPCB

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為,OP1,求∠BCP的度數(shù).

查看答案和解析>>

同步練習冊答案