【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
【答案】(1)證明見解析;(2)當(dāng)n=5時,一邊長為37的直角三角形另兩邊的長分別為12,35.
【解析】
(1)根據(jù)題意只需要證明a2+b2=c2,即可解答
(2)根據(jù)題意將n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
∴a2+b2=c2,
∵n為正整數(shù),
∴a、b、c是一組勾股數(shù);
(2)解:∵n=5
∴a= (m2﹣52),b=5m,c= (m2+25),
∵直角三角形的一邊長為37,
∴分三種情況討論,
①當(dāng)a=37時, (m2﹣52)=37,
解得m=±3 (不合題意,舍去)
②當(dāng)y=37時,5m=37,
解得m= (不合題意舍去);
③當(dāng)z=37時,37= (m2+n2),
解得m=±7,
∵m>n>0,m、n是互質(zhì)的奇數(shù),
∴m=7,
把m=7代入①②得,x=12,y=35.
綜上所述:當(dāng)n=5時,一邊長為37的直角三角形另兩邊的長分別為12,35.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABCD的對角線AC、BD相交于點O,∠BDC=45°,過點B作BH⊥DC交DC的延長線于點H,在DC上取DE=CH,延長BH至F,使FH=CH,連接DF、EF.
(1)若AB=2,AD=,求BH的值;
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點D,點E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當(dāng)∠ABC=90°時,線段DE與BC有什么數(shù)量關(guān)系?請說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進行如下操作:以點B為圓心,適當(dāng)長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點O,畫射線BO,交AD于點E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場今年2月份營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達到633.6萬元.若設(shè)商場3月份到5月份營業(yè)額的月平均增長率為x,則下面列出的方程中正確的是( 。
A.633.6(1+x)2=400(1+10%)B.633.6(1+2x)2=400×(1010%)
C.400×(1+10%)(1+2x)2=633.6D.400×(1+10%)(1+x)2=633.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”,“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎,記每次抽出兩張牌點數(shù)之差為,按表格要求確定獎項.
(1)用列表或畫樹狀圖的方法求出甲同學(xué)獲得一等獎的概率;
(2)是否每次抽獎都會獲獎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機銷售公司有營銷員14人,銷售部為制定營銷人員月銷售手機定額,統(tǒng)計了這14人某月的銷售量如下(單位:臺):
銷售量 | 200 | 170 | 165 | 80 | 50 | 40 |
人 數(shù) | 1 | 1 | 2 | 5 | 3 | 2 |
(1)求這14位營銷員該月銷售該品牌手機的平均數(shù)、中位數(shù)和眾數(shù).
(2)銷售部經(jīng)理把每位營銷員月銷售量定為100臺,你認為是否合理?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上,Rt△ABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓O交BC邊于點D,將半圓O繞點C按逆時針方向旋轉(zhuǎn),點D隨半圓O旋轉(zhuǎn)且∠ECD始終等于∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°)
(1)當(dāng)α=0°時,連接DE,則∠CDE= °,CD= ;
(2)試判斷:旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明;
(3)若m=10,n=8,當(dāng)α=∠ACB時,求線段BD的長;
(4)若m=6,n=4,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時,直接寫出線段BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com