【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點ABC(頂點是網(wǎng)格線交點的三角形)的頂點A,C的坐標分別為(﹣1,1),(0,﹣2),請你根據(jù)所學的知識.

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1

(3)判斷ABC的形狀,并求出ABC的面積.

【答案】(1)見解析;(2)見解析;(3)直角三角形,2.

【解析】

1)根據(jù)點A和點C的坐標即可作出坐標系;

2)分別作出三角形的三頂點關(guān)于y軸的對稱點,順次連接可得;

3)根據(jù)勾股定理的逆定理可得

1)如圖所示

2)如圖所示,A1B1C1即為所求;

3∵正方形小方格邊長為1,AB==BC==2,AC==AB2+BC2=AC2,∴網(wǎng)格中的△ABC是直角三角形

ABC的面積為××2=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:用水平線和豎直線將平面分成若干個面積為1的小長方形格子,小長方形的頂點叫格點,以格點為頂點的多邊形叫格點多邊形.設格點多邊形的面積為S,它各邊上格點的個數(shù)和為x,多邊形內(nèi)部的格點數(shù)為n,S與x,n之間是否存在一定的數(shù)量關(guān)系呢?
(1)問題探究:
如圖1,圖中所示的格點多邊形,其內(nèi)部都只有一個格點,它們的面積與各邊上格點的個數(shù)和的對應關(guān)系如下表,請?zhí)顚懴卤聿懗鯯與x之間的關(guān)系式S=

多邊形的序號

多邊形的面積S

2

2.5

3

4

各邊上格點的個數(shù)和x

4


(2)在圖2中所示的格點多邊形,這些多邊形內(nèi)部都有且只有2個格點.探究此時所畫的各個多邊形的面積S與它各邊上格點的個數(shù)和x之間的關(guān)系式S=
(3)請繼續(xù)探索,當格點多邊形內(nèi)部有且只有n(n是正整數(shù))個格點時,猜想S與x,n之間的關(guān)系式S=(用含有字母x,n的代數(shù)式表示)
(4)問題拓展:
請在正三角形網(wǎng)格中的類似問題進行探究:在圖3、4中正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,圖是該正三角形格點中的兩個多邊形.
根據(jù)圖中提供的信息填表:

格點多邊形各邊上的格點的個數(shù)

格點多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1(圖3)

8

1

8

多邊形2(圖4)

7

3

11

一般格點多邊形

a

b

S

則S與a,b之間的關(guān)系為S=(用含a,b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(0,4)是直角坐標系 y 軸上一點,動點 P 從原點 O 出發(fā),沿 x 軸正半軸運動,速度為每秒 1 個單位長度,以P為直角頂點在第一象限內(nèi)作等腰RtAPB.設P點的運動時間為 t 秒.

(1) ABx 軸,求 t 的值;

(2)OP=OA,B點的坐標.

(3) t=3 時,x 軸上是否存在有一點 M,使得以 M、PA 為頂點的三角形是等腰三角形,請直接寫出點 M 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點E,直線DO交AC于點C.

(1)①求證:△ACO≌△EDO;②求出線段AC、BD的位置關(guān)系和數(shù)量關(guān)系;

(2)動點P從A出發(fā),沿A﹣O﹣B路線運動,速度為1,到B點處停止運動;動點Q從B出發(fā),沿B﹣O﹣A運動,速度為2,到A點處停止運動.二者同時開始運動,都要到達相應的終點才能停止.在某時刻,作PE⊥CD于點E,QF⊥CD于點F.問兩動點運動多長時間時△OPE與△OQF全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是(
A.當m=﹣3時,函數(shù)圖象的頂點坐標是(
B.當m>0時,函數(shù)圖象截x軸所得的線段長度大于
C.當m≠0時,函數(shù)圖象經(jīng)過同一個點
D.當m<0時,函數(shù)在x 時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1.在菱形ABCD中,AB=2 ,tan∠ABC=2,∠BCD=α,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)α度,得到對應線段CF,連接BD、EF,BD交EC、EF于點P、Q.

(1)求證:△ECF∽△BCD;
(2)當t為何值時,△ECF≌△BCD?
(3)當t為何值時,△EPQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)如圖1,AD、BC相交于點O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖2,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若OD= ,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,射線AM平分∠BAC,AB=8,cos∠ACB= ,點P為射線AM上一點,且PB=PC,則四邊形ABPC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C在數(shù)軸上,O為原點,且BO:OC:CA=2:1:5.

(1)如果點C表示的數(shù)是x,請直接寫出點A、B表示的數(shù);

(2)如果點A表示的數(shù)比點C表示的數(shù)兩倍還大4,求線段AB的長.

查看答案和解析>>

同步練習冊答案