【題目】如圖,點C是線段AB上一點,點M、N、P分別是線段AC,BC,AB的中點.
(1)若AB=10cm,則MN= cm;
(2)若AC=3cm,CP=1cm,求線段PN的長.
【答案】(1)5;(2)PN=.
【解析】試題分析:(1)利用線段中點的性質(zhì)得到MC,CN的長度,則MN=MC+CN;
(2)由已知條件可以求得AP=AC+CP=4cm,因為P是AB的中點,所以AB=2AP=8cm,BC=AB-AC=5cm,根據(jù)N為BC的中點,可求得CN,再根據(jù)PN=CN-CP即可求得PN的長.
試題解析:
(1)∵M、N分別是AC、BC的中點,
∴MC=AC,CN=BC
MN=MC+CN=.
故填:5.
(2)∵AC=3,CP=1,
∴AP=AC+CP=4,
∵P是線段AB的中點,
∴AB=2AP=8
∴CB=AB﹣AC=5,
∵N是線段CB的中點,CN=CB=,
∴PN=CN﹣CP=.
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學成就.《九章算術(shù)》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?”譯文:“假設有幾個人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個人共同出錢買雞?雞的價錢是多少?”設有x個人共同買雞,根據(jù)題意列一元一次方程,正確的是( 。
A. 9x﹣11=6x+16 B. 9x+11=6x﹣16 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)作△ABC的角平分線AD(尺規(guī)作圖,保留痕跡);
(2)在AD的延長線上任取一點E,連接BE,CE.
①求證:△BDE≌△CDE;
②當AE=2AD時,四邊形ABEC是平行四邊形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級全體學生在5名教師的帶領下去公園秋游,公園的門票為每人30元.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊老師免費,學生按8折收費;乙方案:師生都按7.5折收費.
(1)若有n名學生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?
(2)當n=70時,采用哪種方案更優(yōu)惠?
(3)當n=100時,采用哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數(shù);
(2)若∠BOF=36°,求∠AOC的度數(shù);
(3)若|∠AOC﹣∠BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某的士的起步價為10元(可以坐3千米的路程),若超過3千米,則超出部分每千米另外加收2 元.
(1)小明坐該的士走了x千米的路程,應該付費多少元?
(2)小芳坐該的士走了18千米的路程,應該付費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=60°,將△ABC沿對角線AC折疊,點B的對應點落在點E處,且點B,A,E在一條直線上,CE交AD于點F,則圖中等邊三角形共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點為的角平分線上的一點,點在邊上.愛動腦筋的小剛經(jīng)過仔細觀察后,進行如下操作:在邊上取一點,使得,這時他發(fā)現(xiàn)與之間有一定的數(shù)量關系,請你寫出與的數(shù)量關系__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com