【題目】如圖,已知點為的角平分線上的一點,點在邊上.愛動腦筋的小剛經(jīng)過仔細觀察后,進行如下操作:在邊上取一點,使得,這時他發(fā)現(xiàn)與之間有一定的數(shù)量關系,請你寫出與的數(shù)量關系__________.
【答案】或
【解析】
如圖,以O為圓心,以OD為半徑作弧,交OB于E2,連接PE2,根據(jù)SAS證△E2OP≌△DOP,推出E2P=PD,得出此時點E2符合條件,此時∠OE2P=∠ODP;以P為圓心,以PD為半徑作弧,交OB于另一點E1,連接PE1,根據(jù)等腰三角形性質推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.
(1)如圖,以O為圓心,以OD為半徑作弧,交OB于E2,連接PE2,
∵OP是∠AOB的平分線,
∴∠E2OP=∠DOP,
在△EOP和△DOP中
∴△E2OP≌△DOP(SAS),
∴∠OE2P=∠ODP,PE2=PD;
(2)以P為圓心,以PD為半徑作弧,交OB于另一點E1,連接PE1,
∵PE1=PE2,
∴∠PE2E1=∠PE1E2,
∴由鄰補角定義可得:∠PE1O+∠PE1E2=180,
∴∠PE1O+∠PDO=180.
綜合上述:或
故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上一點,點M、N、P分別是線段AC,BC,AB的中點.
(1)若AB=10cm,則MN= cm;
(2)若AC=3cm,CP=1cm,求線段PN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家商店因換季將某種服裝打折銷售,每件服裝如果按標價的4折出售將虧40元,而按標價8折出售將賺40元.問:
(1)每件服裝的標價是多少元?
(2)每件服裝的成本是多少元?
(3)為了保證不虧損,最多可以打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負一場得0分,一隊共踢了30場比賽,負了9場,共得47分,那么這個隊勝了( 。
A. 10場 B. 11場 C. 12場 D. 13場
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:小華遇到這樣一個問題:
已知:如圖1,在△ABC中,三邊的長分別為AB= ,AC= ,BC=2,求∠A的正切值.
小華是這樣解決問題的:
如圖2所示,先在一個正方形網(wǎng)格(每個小正方形的邊長均為1)中畫出格點△ABC(△ABC三個頂點都在小正方形的頂點處),然后在這個正方形網(wǎng)格中再畫一個和△ABC相似的格點△DEF,從而使問題得解.
(1)如圖2,△DEF中與∠A相等的角為 , ∠A的正切值為 .
(2)參考小華的方法請解決問題:若△LMN的三邊分別為LM=2,MN=2 ,LN=2 ,求∠N的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在棋盤中建立如圖的直角坐標系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他格點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置的坐標.(寫出2個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某個體經(jīng)營戶銷售同一型號的A、B兩種品牌的服裝,平均每月共銷售60件,已知兩種品牌的成本和利潤如表所示,設平均每月的利潤為y元,每月銷售A品牌x件.
(1)寫出y關于x的函數(shù)關系式.
(2)如果每月投入的成本不超過6500元,所獲利潤不少于2920元,不考慮其他因素,那么銷售方案有哪幾種?
(3)在(2)的條件下要使平均每月利潤率最大,請直接寫出A、B兩種品牌的服裝各銷售多少件?
A | B | |
成本(元/件) | 120 | 85 |
利潤(元/件) | 60 | 30 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com