【題目】如圖,在平面直角坐標系中,拋物線與軸交于兩點,與軸交于點C,點D時拋物線的頂點
(1)求拋物線的解析式和直線的解析式;
(2)試探究:在拋物線上是否存在點P,使得以點為頂點,為直角邊的三角形是直角三角形,若存在,請求出,請求出符合條件的點P的坐標;若不存在,請說明理由.
【答案】(1);直線AC的方程為;(2)存在,點P的坐標為或.
【解析】
(1)根據(jù)拋物線與的交點坐標,設(shè)拋物線的解析式為,化簡得,與原題的解析式對比,易得,解出a的值,代入所設(shè)解析式即可得拋物線解析式;
根據(jù)拋物線與軸交于點C,可求得,設(shè)直線AC的解析式為,把A、C的坐標代入可求出,從而即可求得直線AC的解析式;
(2)分兩種情況求解:①過點C作AC的垂線交拋物線于另一點P,則直線PC的解析式為,再聯(lián)立,可求得交點P的坐標為;
②過點A作AC的垂線交拋物線于點P,則可得所以直線PC的解析式為,聯(lián)立,可求得點P的坐標為.
解:(1)設(shè)拋物線的解析式為,
,
∵,
,
∴,
所以拋物線的解析式為;
當時, ,
∴;
設(shè)直線AC的解析式為,
把代入, ,
所以,
所以直線AC的方程為;
(2)存在;理由如下:
①過點C作AC的垂線交拋物線于另一點P,
∵直線AC的方程為,
∴直線PC的解析式為,
解方程組:,
解得:或,
此時點P的坐標為;
②過點A作AC的垂線交拋物線于點P,
直線PC的解析式為,
把代入得,
所以直線PC的解析式為,
解方程組:,
解得:或,
所以點P的坐標為.
綜上所述,符合條件的點P的坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點P、M.對于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為6的菱形ABCD中,對角線AC,BD交點與點O,點P是△ADO的重心.
(1)當菱形ABCD是正方形時,則PA=________,PD=__________,PO=_________.
(2)線段PA,PD,PO中是否存在長度保持不變的線段,若存在,請求出該線段的長度,若不存在,請說明理由.
(3)求線段PD,DO滿足的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等腰直角三角形,,.折疊該紙片,使點落在線段上,折痕與邊交于點,與邊交于點.
(1)若折疊后使點與點重合,此時__________;
(2)若折疊后使點與邊的中點重合,求的長度;
(3)若折疊后點落在邊上的點為,且使,求此時的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數(shù)會落在 等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公共汽車線路每天運營毛利潤(萬元)與乘客量(萬人)成一次函數(shù)關(guān)系,其圖象如圖所示.目前通過監(jiān)測發(fā)現(xiàn)每天平均乘客量為0.6萬人次,由于運營成本較高,這條線路處于虧損狀態(tài).(毛利潤=票價總收入一運營成本)
(1)求該線路公共汽車的單程票價和每天運營成本分別為多少元.
(2)公交公司為了扭虧,若要使每天運營毛利潤在0.2~0.4萬元之間(包括0.2和0.4),求平均每天的乘客量的范圍.
(3)據(jù)實際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當提高票價,當單程票價每提高1元時,每天平均乘客量相應(yīng)減少0.05萬人次,設(shè)這條線路的單程票價提高元().當為何值時,該線路每天運營總利潤最大,并求出最大的總利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點,⊙O的直徑BE=2,∠BCD=120°,A為的中點,延長BA到點P,使BA=AP,連接PE.
(1)求線段BD的長;
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com