【題目】已知等腰直角△ABC,∠ABC90°,ABBC4,平面內有一點D,連接CDAD,若CD2,AD6,則∠BCD_____.

【答案】135°45°

【解析】

根據(jù)勾股定理的逆定理證明△ACD為直角三角形,求出∠ACD90°,再求出∠ACB45°問題即可解決.

解:∵∠ABC90°,ABBC4,

AC242+4232,而CD24AD26236

AD2AC2+CD2,

∴△ACD為直角三角形,∠ACD90°;

∵△ABC為等腰直角三角形,

∴∠ACB45°,

∴如圖①:∠BCD90°+45°135°;

如圖②:∠BCD90°45°45°.

故∠BCD135°45°.

故答案為:135°45°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于任何數(shù)a,符號[a]表示不大于a的最大整數(shù).

例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.

(1)[﹣]=   ;

(2)如果[a]=3,那么a的取值范圍是   ;

(3)如果[]=﹣3,求滿足條件的所有整數(shù)x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中∠C55°,∠B=∠D90°,EF分別是BC,DC上的點,當EAF周長最小時,∠EAF的度數(shù)為( )

A.55°B.70°C.125°D.110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,ABx軸于點B,ACy軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當QE:DP=9:25時,圖中的陰影部分的面積等于___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是ABAC的垂直平分線,點ENBC上,則∠EAN=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,BC邊上的高AG平分∠BAC.

(1)如圖1,求證:ABAC.

(2)如圖2,點D、E在△ABC的邊BC上,ADAE,BC10cmDE6cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們經(jīng)常遇到需要分類的問題,畫“樹形圖”可以幫我們不重復、不遺漏地分類.

(例題)在等腰三角形ABC中,若A=80°,求B的度數(shù).

∠A、∠B都可能是頂角或底角,因此需要分成如圖1所示的3類,這樣的圖就是樹形圖,據(jù)此可求出∠B=

(應用)

(1)已知等腰三角形ABC周長為19,AB=7,仿照例題畫出樹形圖,并直接寫出BC的長度;

(2)將一個邊長為5、12、13的直角三角形拼上一個三角形后可以拼成一個等腰三角形,圖2就是其中的一種拼法,請你畫出其他所有可能的情形,并在圖上標出所拼成等腰三角形的腰的長度.(選用圖3中的備用圖畫圖,每種情形用一個圖形單獨表示,并用①、②、③…編號,若備用圖不夠,請自己畫圖補充)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拓展與探索:如圖,在正△ABC中,點EAC上,點DBC的延長線上.

(1)如圖1AEECCD,求證:BEED

(2)如圖2,若EAC上異于A、C的任一點,AECD,(1)中結論是否仍然成立?為什么?

(3)EAC延長線上一點,且AECD,試探索BEED間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=12cmBC=9cm,點DAB的中點.

1)如果點P在線段BC上以3厘米/秒的速度由BC點運動,同時點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,當經(jīng)過1秒時,BPDCQP是否全等,請判斷并說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPD≌△CPQ

2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在ABC的哪條邊上會相遇?

查看答案和解析>>

同步練習冊答案