【題目】如圖,在,,,以為直角邊、為直角頂點作等腰直角三角形,則______.

【答案】13

【解析】

由于AD=AB,∠CAD=90°,則可將△ABD繞點A逆時針旋轉(zhuǎn)90°△ABE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAE=90°AC=AE,BE=CD,于是可判斷△ACE為等腰直角三角形,則∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理計算出BE=13,從而得到CD=13

解:∵△ADB為等腰直角三角形,

∴AD=AB,∠BAD=90°,

△ACD繞點A順時針旋轉(zhuǎn)90°△AEB,如圖,

∴∠CAE=90°,AC=AE,CD=BE,

∴△ACE為等腰直角三角形,

∴∠ACE=45°,

∵∠ACB=45°,

∴∠BCE=45°+45°=90°

Rt△BCE中,,

∴CD=13

故答案為13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的直徑,,的切線,上一動點,若,,則的面積的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,的中點,的垂直平分線分別交的延長線于點,,,連接,,連接并延長交于點,則下列結(jié)論中:;②;③;④;⑤ ;⑥;⑦.正確的結(jié)論的個數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為(  )

A. (,)B. (2,)C. (,)D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準(zhǔn)備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.

(1)用畫樹狀圖或列表法求乙獲勝的概率;

(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境

數(shù)學(xué)課上,李老師提出了這樣一個問題:如圖1,點是正方形內(nèi)一點,,.你能求出的度數(shù)嗎?

(1)小敏與同桌小聰通過觀察、思考、討論后,得出了如下思路:

思路一:將繞點逆時針旋轉(zhuǎn),得到,連接,求出的度數(shù).

思路二:將繞點順時針旋轉(zhuǎn),得到,連接,求出的度數(shù).

請參考以上思路,任選一種寫出完整的解答過程.

類比探究

(2)如圖2,若點是正方形外一點,,,,求的度數(shù).

拓展應(yīng)用

(3)如圖3,在邊長為的等邊三角形內(nèi)有一點,,則的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生自主學(xué)習(xí)的具體情況,童老師隨機對部分學(xué)生進行了跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差,繪制成了以下兩幅不完整的統(tǒng)計圖(每位學(xué)生只屬于一類),請你解答下列問題:

(1) 本次調(diào)查的樣本容量為__________

(2) 將條形統(tǒng)計圖補充完整

(3) D類所占扇形角的度數(shù)為__________

(4) 學(xué)校共有2000名學(xué)生,其中自主學(xué)習(xí)情況特別好的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC8BC6,點EAB邊上一動點,過點EDEABAC邊于點D,將∠A沿直線DE翻折,點A落在線段AB上的F處,連接FC,當(dāng)△BCF為等腰三角形時,AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A7,8)、C0,6),ABx軸,垂足為點B,點D在線段OB上,DEAC,交AB于點EEFCD,交AC于點F

1)求經(jīng)過A、C兩點的直線的表達式;

2)設(shè)ODt,BEs,求st的函數(shù)關(guān)系式;

3)是否存在點D,使四邊形CDEF為矩形?若存在,請直接寫出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案