【題目】 如圖,AB⊙O的直徑,C⊙O上一點(diǎn),過點(diǎn)B作經(jīng)過點(diǎn)C的直線CD的垂線,垂足為E(即BE⊥CD),BE⊙O于點(diǎn)F,且BC平分∠ABE

1)求證:CD⊙O的切線;

2)若AB=10,CE=4,求線段EF的長(zhǎng).

【答案】(1)證明見解析;(2)EF=2.

【解析】

1)連接OC,證CD⊥OC即可,因?yàn)?/span>BE⊥CD,所以只要證OC∥BE即可,而根據(jù)等邊對(duì)等角,以及角平分線的定義,即可證得∠OCB=∠EBC,則OC∥BE;(2)連接AC,△ABC∽△CBE,設(shè)AC=x,,由勾股定理可得,由圖知ACBC,所以,BC=,BE=8,由切割線定理可求出EF.

解:(1)連接OC∵OC=OB,

∴∠ABC=∠OCB

∵∠EBC=∠ABC,

∴∠OCB=∠EBC

∴OC∥BE,

∵BE⊥CD

∴OC⊥CD

∴CD⊙O的切線;

2)連接AC,因?yàn)?/span>AB是直徑,所以∠ACB90°

BC平分∠ABE所以△ABC∽△CBE

設(shè)AC=x,所以,

由勾股定理可得,由圖知ACBC,所以,BC=,BE=8

由切割線定理得:,所以,

所以EF=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE

)求證:AE⊙O的切線;

)若∠DBC=30°,DE=1 cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊ABx軸上,頂點(diǎn)Dy軸的正半軸上,點(diǎn)C在第一象限,將AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DEBC交于點(diǎn)F.若yk≠0)圖象經(jīng)過點(diǎn)C,且SBEF1,則k的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盒中有x枚黑棋和y枚白棋,這些棋除顏色外無其他差別.

(1)從盒中隨機(jī)取出一枚棋子,如果它是黑棋的概率是,寫出表示xy關(guān)系的表達(dá)式.

(2)往盒中再放進(jìn)10枚黑棋,取得黑棋的概率變?yōu)?/span>,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O 的半徑長(zhǎng)為2,點(diǎn)C為直徑AB的延長(zhǎng)線上一點(diǎn),且BC=2.過點(diǎn)C任作一條直線l.若直線l上總存在點(diǎn)P,使得過點(diǎn)P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的袋子中裝有3個(gè)紅球和2個(gè)綠球,它們除顏色外無其它差別.

1)隨機(jī)摸出一個(gè)球后,放回并搖勻,再隨機(jī)摸出一個(gè)球,用列表或畫樹狀圖的方法求出所有等可能的結(jié)果;

2)同時(shí)摸出兩個(gè)球,直接寫出“摸出的兩個(gè)球都是紅球”的概率是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣2x+8與反比例函數(shù)(x0)的圖象交于A(m,6)B(3,n)兩點(diǎn),與x軸交于D點(diǎn).

1)求反比例函數(shù)的解析式.

2)在第一象限內(nèi),根據(jù)圖象直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勝利中學(xué)從全校學(xué)生中隨機(jī)選取一部分學(xué)生,對(duì)他們每周上網(wǎng)的時(shí)間t進(jìn)行調(diào)查,調(diào)查情況分為:小時(shí);小時(shí)小時(shí);小時(shí)小時(shí);小時(shí)四種,并將統(tǒng)計(jì)結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:

求參加調(diào)查的學(xué)生的人數(shù);

求扇形圖中組扇形的圓心角度數(shù),并通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

在所調(diào)查的學(xué)生中,隨機(jī)選取一名學(xué)生,求他每周上網(wǎng)時(shí)間大于小時(shí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,我們將橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.若拋物線yax22ax+a+3x軸圍成的區(qū)域內(nèi)(不包括拋物線和x軸上的點(diǎn))恰好有8個(gè)“整點(diǎn)”,則a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案