【題目】Rt中,∠A=90°,AC=4,,將沿著斜邊BC翻折,點(diǎn)A落在點(diǎn)處,點(diǎn)D、E分別為邊AC、BC的中點(diǎn),聯(lián)結(jié)DE并延長(zhǎng)交所在直線于點(diǎn)F,聯(lián)結(jié),如果為直角三角形時(shí),那么____________

【答案】4

【解析】

當(dāng)△A1EF為直角三角形時(shí),存在兩種情況:
①當(dāng)∠A1EF=90°時(shí),如圖1,根據(jù)對(duì)稱的性質(zhì)和平行線可得:A1C= A1E=4,根據(jù)直角三角形斜邊中線的性質(zhì)得:BC=2 A1E=8,最后利用勾股定理可得AB的長(zhǎng);
②當(dāng)∠A1FE=90°時(shí),如圖2,證明△ABC是等腰直角三角形,可得AB=AC=4

解:當(dāng)△A1EF為直角三角形時(shí),存在兩種情況:
①當(dāng)∠A1EF=90°時(shí),如圖1,
∵△A1BC與△ABC關(guān)于BC所在直線對(duì)稱,
A1C=AC=4,∠ACB=A1CB,
∵點(diǎn)DE分別為AC,BC的中點(diǎn),
D、E是△ABC的中位線,
DEAB,
∴∠CDE=MAN=90°,
∴∠CDE=A1EF,
ACA1E,
∴∠ACB=A1EC,
∴∠A1CB=A1EC
A1C= A1E=4,
RtA1CB中,∵E是斜邊BC的中點(diǎn),
BC=2 A1E=8,
由勾股定理得:AB2=BC2-AC2
AB=
②當(dāng)∠A1FE=90°時(shí),如圖2,
∵∠ADF=A=DFB=90°,
∴∠ABF=90°,
∵△A1BC與△ABC關(guān)于BC所在直線對(duì)稱,
∴∠ABC=CB A1=45°,
∴△ABC是等腰直角三角形,
AB=AC=4;
綜上所述,AB的長(zhǎng)為44
故答案為:44.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某縣建檔立卡貧困戶對(duì)精準(zhǔn)扶貧政策落實(shí)的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機(jī)抽取了部分貧困戶進(jìn)行了調(diào)查(把調(diào)查結(jié)果分為四個(gè)等級(jí):A級(jí):非常滿意:B級(jí)滿意;C級(jí):基本滿意:D級(jí):不滿意),并將調(diào)查結(jié)果繪制成如兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:

1)本次抽樣調(diào)查測(cè)試的建檔立卡貧困戶的總戶數(shù)是   

2)圖①中,∠α的度數(shù)是   ,并把圖②條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請(qǐng)估計(jì)非常滿意的戶數(shù)約為多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙軸交于、,與軸交于點(diǎn),為⊙上不同于的任意一點(diǎn),連接、,過(guò)點(diǎn)分別作,.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,下列圖象中能表示的函數(shù)關(guān)系的部分圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:無(wú)論函數(shù)解析式中自變量的字母系數(shù)取何值,函數(shù)的圖象都會(huì)過(guò)某一個(gè)點(diǎn),這個(gè)點(diǎn)稱為定點(diǎn). 例如,在函數(shù)中,當(dāng)時(shí),無(wú)論取何值,函數(shù)值,所以這個(gè)函數(shù)的圖象過(guò)定點(diǎn).

求解體驗(yàn)

1)①關(guān)于的一次函數(shù)的圖象過(guò)定點(diǎn)_________.

②關(guān)于的二次函數(shù)的圖象過(guò)定點(diǎn)__________________.

知識(shí)應(yīng)用

2)若過(guò)原點(diǎn)的兩條直線、分別與二次函數(shù)交于點(diǎn)和點(diǎn),試求直線所過(guò)的定點(diǎn).

拓展應(yīng)用

3)若直線與拋物線交于兩點(diǎn),試在拋物線上找一定點(diǎn),使,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,于點(diǎn),為等腰直角三角形,,當(dāng)繞點(diǎn)旋轉(zhuǎn)時(shí),記.

(1)過(guò)點(diǎn)交射線于點(diǎn),作射線交射線于點(diǎn).

①依題意補(bǔ)全圖形,求的度數(shù);

②當(dāng)時(shí),求的長(zhǎng).

(2)上存在一點(diǎn),且,作射線交射線于點(diǎn),直接寫出長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在中,AD的中線,∠DAC=B,點(diǎn)E在邊AD上,CE=CD.

1)求證:;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為響應(yīng)全民閱讀活動(dòng),利用節(jié)假日面向社會(huì)開(kāi)放學(xué)校圖書館.據(jù)統(tǒng)計(jì),第一個(gè)月進(jìn)館128人次,進(jìn)館人次逐月增加,到第三個(gè)月進(jìn)館達(dá)到288人次,若進(jìn)館人次的月平均增長(zhǎng)率相同.

1)求進(jìn)館人次的月平均增長(zhǎng)率;

2)因條件限制,學(xué)校圖書館每月接納能力不得超過(guò)500人次,在進(jìn)館人次的月平均增長(zhǎng)率不變的條件下,校圖書館能否接待第四個(gè)月的進(jìn)館人次,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一條邊的邊長(zhǎng)為3,它的另兩條邊的邊長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具公司生產(chǎn)一種電子玩具,每只玩具的生產(chǎn)成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)只)與銷售單價(jià)x(元)之間的關(guān)系可以近似的看作一次函數(shù)y=2x+100,設(shè)每月銷售這種玩具的利潤(rùn)為w(萬(wàn)元).

1)寫出wx之間的函數(shù)表達(dá)式;

2)當(dāng)銷售單價(jià)為多少元時(shí),公司每月獲得的利潤(rùn)為440萬(wàn)元?

3)如果公司每月的生產(chǎn)成本不超過(guò)540萬(wàn)元,那么當(dāng)銷售單價(jià)為多少元時(shí),公司每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案