【題目】如圖,育英學(xué)校前方有一斜坡AB60米,坡度i1BCAC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示),修建一個平行于水平線CA的平臺DE和一條新的斜坡BE

1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平合DE最長是多少米?

2)學(xué)校教學(xué)樓GH距離坡腳A27米遠(即AG27米),小明在D點測得教學(xué)樓頂部H的仰角(即∠HDM)為30°.點BC、AG、H在同一個平面上,點C、AG在同一條直線上,且HGCG,問:教學(xué)樓GH高為多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù)1.732

【答案】1)平合DE最長是11.0米;(2)教學(xué)樓GH高為45.6米.

【解析】

1)由斜坡BE的坡角(即∠BEF)不大于45°,可得出當(dāng)∠BEF=45°時,EF最短,此時ED最長,由斜坡AB的坡度可得出∠BAC=BDF=30°,由點DAB的中點可得出ADBD的長,通過解直角三角形可求出EFDF的長,結(jié)合DE=DF-EF可求出平合DE最大值;
2)過點DDPAC,垂足為點P,在RtDPA中,通過解直角三角形可求出PA的長,利用矩形的性質(zhì)可求出DM的長,在RtDMH中,通過解直角三角形可求出HM的長,再結(jié)合GH=HM+MG可求出教學(xué)樓GH的值.

1)∵斜坡BE的坡角(即∠BEF)不大于45°,

∴∠BEF最大為45°,

當(dāng)∠BEF45°時,EF最短,此時ED最長.

tanBACi

∴∠BAC=∠BDF30°.

∵點DAB的中點,

ADBDAB30米,

BFEFBD15米,DF15 米,

DEDFEF151)≈11.0米.

答:平合DE最長是11.0米.

2)如圖,過點DDPAC,垂足為點P

RtDPA中,DPAD15米,PAADcos30°=15 米.

在矩形DPGM中,MGDP15米,DMPGPA+AD=(15 +27)米,

RtDMH中,HMDMtan30°=(15+27)×=(15+9 )米,

GHHM+MG15+15+945.6米.

答:教學(xué)樓GH高為45.6米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:經(jīng)過三角形的一個頂點且將三角形的周長分成相等的兩部分的直線叫做該角形的“等周線”,“等周線”被這個三角形截得的線段叫做該三角形的“等周徑”.例如等腰三角形底邊上的中線即為它的“等周徑”RtABC中,∠C90°,AC4,BC3,若直線ABC的“等周線”,則ABC的所有“等周徑”長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊的垂直平分線交于點,交于點,連接.當(dāng)時,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線yax+3)(x1)(a0)與x軸交于A,B兩點(點A在點B的左側(cè)).

1)求點A與點B的坐標(biāo);

2)若a,點M是拋物線上一動點,若滿足∠MAO不大于45°,求點M的橫坐標(biāo)m的取值范圍.

3)經(jīng)過點B的直線lykx+by軸正半軸交于點C.與拋物線的另一個交點為點D,且CD4BC.若點P在拋物線對稱軸上,點Q在拋物線上,以點B,DP,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點E,作EDEBAB于點D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,

以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個數(shù)為123n

如果圖中的圓圈共有13層,請解決下列問題:

1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)12,34,……,則最底層最左

邊這個圓圈中的數(shù)是 ;

2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______

3)求圖4中所有圓圈中各數(shù)的絕對值之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年全球超級計算機500強名單公布,中國超級計算機“神威·太湖之光”和“天河二號”攜手奪得前兩名.已知“神威·太湖之光”的浮點運算速度是“天河二號”的2.74倍.這兩種超級計算機分別進行100億億次浮點運算“神威·太湖之光”的運算時間比“天河二號”少18.75秒,求這兩種超級計算機的浮點運算速度.設(shè)“天河二號”的浮點運算速度為億億次/秒,依題意,可列方程為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:

年級

六年級

七年級

八年級

九年級

男生

250

z

254

258

女生

x

244

y

252

若從全校學(xué)生中任意抽取一名,抽到六年級女生的概率是0.12;若將各年級的男、女學(xué)生人數(shù)制成扇形統(tǒng)計圖,八年級女生對應(yīng)扇形的圓心角為44.28°.

(1)xy,z的值;

(2)求各年級女生的平均數(shù);

(3)如果從八年級隨機抽取36名學(xué)生參加社會實踐活動,求抽到八年級某同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案