【題目】已知二次函數(shù)的圖像如圖,頂點(diǎn)坐標(biāo)D為(3, )。它與軸交于A,B兩點(diǎn)(點(diǎn)A在B的左側(cè)),與軸交于C點(diǎn),且AB的長為12. 動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿AB方向以1個(gè)單位長度/秒的速度向點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)求二次函數(shù)的解析式;

2)當(dāng)△PDB為等腰三角形時(shí),求t的值;

3)若動(dòng)點(diǎn)QP同時(shí)從A點(diǎn)出發(fā),點(diǎn)Q沿折線ACCDDB運(yùn)動(dòng),在AC,CD,DB上運(yùn)動(dòng)的速度分別為3,,2 (個(gè)單位長度/)﹒當(dāng)P,Q中的一點(diǎn)到達(dá)B點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連結(jié)PQ.

當(dāng)PQ的中點(diǎn)恰好落在y軸上時(shí),求t的值;

P,Q的運(yùn)動(dòng)過程中,若線段PQ的垂直平分線與線段BD有交點(diǎn)時(shí),請(qǐng)直接寫出t的取值范圍.

【答案】1

2t=5 或

3

4

【解析】試題分析:(1)由頂點(diǎn)坐標(biāo)(3, )可設(shè),由AB=12及頂點(diǎn)坐標(biāo)(3, ),可得a的值,從而求出二次函數(shù)的解析式;

(2)分兩種情況:PD=PB;BD=BP進(jìn)行討論,得出t 值;

試題解析:(1由題意可知二次函數(shù)

又∵AB=12

(2)當(dāng)PD=PB時(shí), 解得 t=5

當(dāng)BD=BP時(shí),

(3)當(dāng)PQ的中點(diǎn)在y軸上時(shí),過點(diǎn)Q作QE垂直y軸

在RT中,

解得

4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運(yùn)算:對(duì)于任意有理數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,則(﹣3)⊕4的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:4xx3_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)去年的年產(chǎn)值為a億元,今年增長率為x,如果明年還能按這個(gè)速度增長,那么預(yù)計(jì)明年的年產(chǎn)值為( )億元.
A.a(1+2x)
B.2a(1+x%)
C.a(1+x)2
D.a+2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,二次函數(shù)y=ax2﹣5x+c的圖象如圖.

(1)求這個(gè)二次函數(shù)的解析式

(2)觀察圖象,回答:何時(shí)y隨x的增大而增大;何時(shí)y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2.ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后得到EDC,此時(shí)點(diǎn)D落在AB邊上,斜邊DEAC于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為(

A. 302 B. 60,2 C. 60 D. 60,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)墻上時(shí),梯子的頂端在B點(diǎn);當(dāng)它靠在另一側(cè)墻上時(shí),梯子的頂端在D點(diǎn).已知∠BAC60°DAE45°.點(diǎn)D到地面的垂直距離,求點(diǎn)B到地面的垂直距離BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)A(2,﹣3)向右平移3個(gè)單位長度得到點(diǎn)B,則點(diǎn)B在第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ ABC的角A,B,C所對(duì)邊分別為a,b,c,點(diǎn)O是△ABC的外心,OD⊥BD于D,OE⊥AC于E,OF⊥AB于F,則OD∶OE∶OF為( )

A. a∶b∶c B. C. sinA∶sinB∶sinC D. cosA∶cosB∶cosC

查看答案和解析>>

同步練習(xí)冊(cè)答案