【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①2a+b=0;②abc<0;③b2﹣4ac>0;④8a+c>0.其中正確的有( )
A. 0個 B. 1個 C. 2個 D. 3個
【答案】D
【解析】分析:首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點可得c<0,再根據(jù)二次函數(shù)的對稱軸x=-,結(jié)合圖象與x軸的交點可得對稱軸為x=1,結(jié)合對稱軸公式可判斷出①的正誤;根據(jù)對稱軸公式結(jié)合a的取值可判定出b<0,根據(jù)a、b、c的正負即可判斷出②的正誤;利用拋物線與x軸有兩個交點即可判斷出③的正誤;利用當x=4時,y>0,則16a+4b+c>0,由①知,b=-2a,得出8a+c>0,即可判斷出④的正誤.
詳解:根據(jù)圖象可得:拋物線開口向上,則a>0.拋物線與y交與負半軸,則c<0,
對稱軸:x=>0,
①∵它與x軸的兩個交點分別為(1,0),(3,0),
∴對稱軸是x=1,
∴=1,
∴b+2a=0,
故①正確;
②∵a>0,=1,
∴b<0,
又∵c<0,
∴abc>0,
故②錯誤;
③∵拋物線與x軸有兩個交點,
∴b2﹣4ac>0,
故③正確;
④根據(jù)圖示知,當x=4時,y>0,
∴16a+4b+c>0,
由①知,b=2a,
∴8a+c>0;
故④正確;
綜上所述,正確的結(jié)論是:①③④,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】點A,B在數(shù)軸上分別表示有理數(shù)a,b.A,B兩點之間的距離表示為AB,在數(shù)軸上A,B兩點之間的距離AB=|a﹣b|.利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示﹣2和8兩點之間的距離是________.
(2)數(shù)軸上表示x和﹣4兩點A和B之間的距離表示為__________;如果AB=2,那么x=___________.
(3)若點C表示的數(shù)為x,當點C在什么位置時,| x+1|+|x1|取得的值最小,并直接寫出最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為a,點B表示的數(shù)為b,且滿足.
(1)寫出a、b及AB的距離:a=________;b=________;AB=________.
(2)若動點P從點A出發(fā),以每秒3個點位長度沿數(shù)軸向右勻速運動,動點Q從點B出發(fā),以每秒5個單位長度向右勻速運動,若P、Q同時出發(fā),問點Q運動多少秒追上點P?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、面C相對的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,M,N,P,R分別是數(shù)軸上的四個整數(shù)所對應的點,其中有一個點是原點,并且,MN=NP=PR=1,數(shù)a對應的點在M和N之間,數(shù)b對應的點在P和R之間,若|a|+|b|=2,則原點是(填M,N,P,R中的一個或幾個)_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC中,點D是邊AB的中點,CE∥AB,且AB=2CE,連結(jié)BE、CD。
(1)求證:四邊形BECD是平行四邊形;
(2)用無刻度的直尺畫出△ABC邊BC上的中線AG(保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我鄉(xiāng)某校舉行全體學生“定點投籃”比賽,每位學生投40個,隨機抽取了部分學生的投籃結(jié)果,并繪制成如下統(tǒng)計圖表。
組別 | 投進個數(shù) | 人數(shù) |
A | 10 | |
B | 15 | |
C | 30 | |
D | m | |
E | n |
根據(jù)以上信息完成下列問題。
①本次抽取的學生人數(shù)為多少?
②統(tǒng)計表中的m=__________;
③扇形統(tǒng)計圖中E組所占的百分比;
④補全頻數(shù)分布直方圖;
⑤扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù);
⑥本次比賽中投籃個數(shù)的中位數(shù)落在哪一組;
⑦已知該校共有900名學生,如投進個數(shù)少于24個定為不合格,請你估計該校本次投籃比賽不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:四邊形AFCE是平行四邊形;
(2)填空:①當t為 s時,四邊形ACFE是菱形;②當t為 s時,△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡÷(-),然后再從-2<x≤2的范圍內(nèi)選取一個合適的x的整數(shù)值代入求值
【答案】4.
【解析】試題分析:先將原分式進行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡后的代數(shù)式中即可得出結(jié)論.
試題解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x為整數(shù),∴x=2.
將x=2代入中得: ==4.
考點:分式的化簡求值.
【題型】解答題
【結(jié)束】
21
【題目】解方程:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com