分析 根據(jù)BC×BO=1,BP×BO=4,得出BC=$\frac{1}{4}$BP,再利用AO×AD=1,AO×AP=4,得出AD=$\frac{1}{4}$AP,進而求出$\frac{3}{4}$PB×$\frac{3}{4}$PA=CP×DP=$\frac{9}{4}$,即可得出△PCD的面積.
解答 解:作CE⊥AO于E,DF⊥CE于F,
∵PA⊥x軸于點A,PB⊥y軸于點B,
∴矩形BCEO的面積為:BC×BO=1,矩形BPAO的面積為:BP×BO=4,
∴BC=$\frac{1}{4}$BP,
∵AO×AD=1,AO×AP=4,
∴AD=$\frac{1}{4}$AP,
∵PA•PB=4,
∴$\frac{3}{4}$PB×$\frac{3}{4}$PA=$\frac{9}{16}$PA•PB=CP×DP=$\frac{9}{16}$×4=$\frac{9}{4}$,
∴△PCD的面積為:$\frac{1}{2}$×CP×DP=$\frac{9}{8}$.
故答案為:$\frac{9}{8}$
點評 本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,在反比例函數(shù)y=$\frac{k}{x}$的圖象上任取一點,過這點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|,這是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com