【題目】在平面直角坐標(biāo)系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,以A1B1為直角邊作第三個Rt△A1B1A2,…,依此規(guī)律,得到Rt△B2018A2019B2019,則點B2019的縱坐標(biāo)為________.
【答案】32020
【解析】
根據(jù)題意得出A1、B1的坐標(biāo),進而得出An,Bn坐標(biāo),進而得出坐標(biāo)變化規(guī)律,進而得出答案.
∵點A(,1)在射線OM上,∴點A、A1、A2、A3……A2018各點在正比例函數(shù)yOM=x的圖象上
點B、B1、B2、B3……B2018各點在正比例函數(shù)yON=x的圖象上,
依題意可知
B點的縱坐標(biāo)=A點橫坐標(biāo)的倍,
A1的縱坐標(biāo)=B點的縱坐標(biāo)=3,
∴A1的橫坐標(biāo)=B點的縱坐標(biāo)的倍=A點橫坐標(biāo)的3倍=×3
B1點的縱坐標(biāo)=A1點橫坐標(biāo)的倍=3×3,
∴An點橫坐標(biāo)=×3n,
Bn點的縱坐標(biāo)=3×3n
∴點B2019的縱坐標(biāo)為3×32019=32020
故答案為:32020
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用元第一次購進一批服裝,售完后又用元購進同樣的服裝,件數(shù)是第一次件數(shù)的倍,第二次比第一次每件貴了元.
(1)商店兩次共購進服裝多少件?
(2)第一次以元/件很快銷售完畢,第二次也以同樣的價格銷售,最后還剩件,然后又以折的價格很快售完,請問該商店第二批服裝的盈虧情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點O為△ABC的兩條角平分線的交點,過點O作OD⊥BC,垂足為D,且OD=4.若△ABC的面積是34,則△ABC的周長為( 。
A.8.5B.15C.17D.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我省“大美青海,美麗夏都”影響力的擴大,越來越多的游客慕名而來.根據(jù)青海省旅游局《2015年國慶長假出游趨勢報告》繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)2015年國慶期間,西寧周邊景區(qū)共接待游客 萬人,扇形統(tǒng)計圖中“青海湖”所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖;
(2)預(yù)計2016年國慶節(jié)將有80萬游客選擇西寧周邊游,請估計有多少萬人會選擇去貴德旅游?
(3)甲乙兩個旅行團在青海湖、塔爾寺、原子城三個景點中,同時選擇去同一個景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AGAB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接第十一屆少數(shù)民族傳統(tǒng)體育運動會,鄭州市園林局打算購買A,B兩種花裝點城區(qū)道路,負責(zé)人小李去花卉基地調(diào)查發(fā)現(xiàn):購買2盆A種花和3盆B種花需要23元,購買4盆A種花和2盆B種花需要26元.
(1)求A,B兩種花的單價各為多少元?
(2)鄭州市園林局若購買A, B兩種花共12000盆,且購買的A種花不少于3000盆,但不多于5000盆,若購買的A種花不超于3000盆時,花卉基地會給每盆A種花打8折,
①設(shè)購買的A種花m盆,總費用為W元,求w與m的關(guān)系式:
②請你幫小李設(shè)計一種購花方案使花費總少?并求出最少費用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件。若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 為 AC 上一點,將△ABD 沿 BD 折疊,使點 A 恰好落在 BC 上的 E 處,則折痕 BD 的長是( )
A.5B.C.3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:已知,如圖(1),在面積為S的△ABC中, BC=a,AC=b, AB=c,內(nèi)切圓O的半徑為r連接OA、OB、OC,△ABC被劃分為三個小三角形.
∴.
(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com