【題目】如圖,已知點(diǎn)O為△ABC的兩條角平分線的交點(diǎn),過點(diǎn)O作OD⊥BC,垂足為D,且OD=4.若△ABC的面積是34,則△ABC的周長為( 。
A.8.5B.15C.17D.34
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 .
[實(shí)踐運(yùn)用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.
圖1 圖2
(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且S△PCD=2S△PAD ,求點(diǎn)P的坐標(biāo);
(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)M,N為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Q為x軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長線一點(diǎn),對(duì)角線BD與AC交于點(diǎn)O,以線段AG為邊作一個(gè)正方形AEFG,連接EB、GD.
(1)求證:EB=GD;
(2)若AB=5,AG=2,求EB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】吉祥超市準(zhǔn)備購進(jìn)甲、乙兩種綠色袋裝食品共800袋.甲、乙兩種綠色袋裝食品的進(jìn)價(jià)和售價(jià)如表.已知:用2000元購進(jìn)甲種袋裝食品的數(shù)量與用1600元購進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(jià)(元/袋) | m | m﹣2 |
售價(jià)(元/袋) | 20 | 13 |
(1)求m的值;
(2)假如購進(jìn)的甲、乙兩種綠色袋裝食品全部賣出,所獲總利潤不少于5200元,且不超過5280元,問該超市有幾種進(jìn)貨方案?(利潤=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小銘和小雨在學(xué)習(xí)過程中有如下一段對(duì)話:
小銘:“我知道一般當(dāng)m≠n時(shí),≠.可是我見到有這樣一個(gè)神奇的等式:
=(其中a,b為任意實(shí)數(shù),且b≠0).你相信它成立嗎?”
小雨:“我可以先給a,b取幾組特殊值驗(yàn)證一下看看.”
完成下列任務(wù):
(1)請(qǐng)選擇兩組你喜歡的、合適的a,b的值,分別代入閱讀材料中的等式,寫出代入后得到的具體等式并驗(yàn)證它們是否成立(在相應(yīng)方框內(nèi)打勾);
① 當(dāng)a= ,b= 時(shí),等式 (□成立;□不成立);
② 當(dāng)a= ,b= 時(shí),等式 (□成立;□不成立).
(2)對(duì)于任意實(shí)數(shù)a,b(b≠0),通過計(jì)算說明=是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個(gè)Rt△BA1B1,以A1B1為直角邊作第三個(gè)Rt△A1B1A2,…,依此規(guī)律,得到Rt△B2018A2019B2019,則點(diǎn)B2019的縱坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題6分)為了參加中考體育測(cè)試,甲,乙,丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練。球從一個(gè)人
腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳球給其余兩人的機(jī)會(huì)是均等的,由甲開始傳球,共傳三次。
(1)求請(qǐng)用樹狀圖列舉出三次傳球的所有可能情況;
(2)傳球三次后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com