已知拋物線y=ax2+bx+c(a>0)過(﹣2,0),(2,3)兩點(diǎn),那么拋物線的對(duì)稱軸( )
A.只能是x=﹣1
B.可能是y軸
C.可能在y軸右側(cè)且在直線x=2的左側(cè)
D.可能在y軸左側(cè)且在直線x=﹣2的右側(cè)
D
【考點(diǎn)】二次函數(shù)的性質(zhì).
【專題】壓軸題.
【分析】根據(jù)題意判定點(diǎn)(﹣2,0)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)橫坐標(biāo)x2滿足:﹣2<x2<2,從而得出﹣2<<0,即可判定拋物線對(duì)稱軸的位置.
【解答】解:∵拋物線y=ax2+bx+c(a>0)過(﹣2,0),(2,3)兩點(diǎn),
∴點(diǎn)(﹣2,0)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)橫坐標(biāo)x2滿足:﹣2<x2<2,
∴﹣2<<0,
∴拋物線的對(duì)稱軸在y軸左側(cè)且在直線x=﹣2的右側(cè).
故選:D.
【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì),根據(jù)點(diǎn)坐標(biāo)判斷出另一個(gè)點(diǎn)的位置是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一元二次方程2x2﹣3x﹣5=0的兩個(gè)實(shí)數(shù)根分別為x1、x2,則x1+x2的值為( 。
A. B.﹣ C.﹣ D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O是以數(shù)軸原點(diǎn)O為圓心,半徑為3的圓,與坐標(biāo)軸的正半軸分別交于A、C兩點(diǎn),OB平分∠AOC,點(diǎn)P在數(shù)軸上運(yùn)動(dòng),過點(diǎn)P且與OB平行的直線與⊙O有公共點(diǎn),則線段OP的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰三角形ABC中,AC=BC=10,AB=12,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,DF⊥AC,垂足為F,交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線EF是⊙O的切線;
(2)求cos∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,下列條件中不能判斷△ABC∽△AED的是( 。
A.∠AED=∠B B.∠ADE=∠C C. = D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.有A,B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B 布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2和﹣3.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).
(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);
(2)求點(diǎn)Q落在直線y=﹣x﹣1上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC中,∠ACB=90°,∠A=50°,將其折疊,使點(diǎn)A落在邊CB上A′處,折痕為CD,則∠A′DB=( 。
A.40° B.30° C.20° D.10°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com