【題目】1,圖2分別是一滑雪運(yùn)動(dòng)員在滑雪過(guò)程中某一時(shí)刻的實(shí)物圖與示意圖,已知運(yùn)動(dòng)員的小腿與斜坡垂直,大腿與斜坡平行,且三點(diǎn)共線,若雪仗長(zhǎng)為,,求此刻運(yùn)動(dòng)員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):

【答案】1.3m

【解析】

三點(diǎn)共線,連接GE,根據(jù)EDABEFAB,求出∠GEF=EDM=90°,利用銳角三角函數(shù)求出GE,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出DE,即可得到答案.

三點(diǎn)共線,連接GE,

EDAB,EFAB,

∴∠GEF=EDM=90°,

RtGEF中,∠GFE=62°,,

m

RtDEM中,∠EMD=30°EM=1m,

ED=0.5m

h=GE+ED=0.75+0.5m,

答:此刻運(yùn)動(dòng)員頭部到斜坡的高度約為1.3m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中有1個(gè)紅球,1個(gè)白球和2個(gè)藍(lán)球,這些球除顏色外都相同,從中隨機(jī)摸出1個(gè)球,記下顏色后放回,再?gòu)闹须S機(jī)摸出1個(gè)球.

兩次摸到相同顏色的球的概率;

在上面的問(wèn)題中,如果從中隨機(jī)摸出1個(gè)球,記下顏色后不放回,再?gòu)闹须S機(jī)摸出1個(gè)球,求兩次摸到的球的顏色能配成紫色紅色與藍(lán)色配成紫色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎在完成一項(xiàng)社會(huì)調(diào)查作業(yè)時(shí),需要調(diào)查城市送餐人員的收入情況,他了解到勞務(wù)公司為了鼓勵(lì)送餐員的工作積極性,實(shí)行月總收入基本工資(固定)送餐單數(shù)獎(jiǎng)勵(lì)的方法計(jì)算薪資,調(diào)查中獲得如下信息:

送餐員

小李

小楊

月送餐單數(shù)/

292

273

月總收入/

3384

3346

送餐每單獎(jiǎng)勵(lì)元,送餐員月基本工資為元;

1)求ab的值;

2)若月送餐單數(shù)超過(guò)300單時(shí),超過(guò)部分每單的獎(jiǎng)金增加1元.假設(shè)月送餐單數(shù)為單,月總收入為元,請(qǐng)寫(xiě)出的函數(shù)關(guān)系式,若送餐員小李計(jì)劃月收入不低于5200元,那么他每月至少要送多少單?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形 ABCD 中,E 為邊 BC 上一點(diǎn),F 為邊 CD 上一點(diǎn),且∠AEF=90°

1)如圖 1,若 ABCD 為正方形,E BC 中點(diǎn),求證:

2)若 ABCD 為平行四邊形,∠AFE=ADC

①如圖 2,若∠AFE=60°,求的值;

②如圖 3,若 AB=BC,EC=2CF.直接寫(xiě)出 cosAFE 值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=1,BC=,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交于BC,AD于點(diǎn)E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為   時(shí),四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說(shuō)明理由;如果可能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn)和半徑為1,定義如下:

①點(diǎn)的“派生點(diǎn)”為;

②若上存在兩個(gè)點(diǎn),使得,則稱(chēng)點(diǎn)的“伴侶點(diǎn)”.

應(yīng)用:已知點(diǎn)

1)點(diǎn)的派生點(diǎn)坐標(biāo)為________;在點(diǎn)中,的“伴侶點(diǎn)”是________;

2)過(guò)點(diǎn)作直線軸正半軸于點(diǎn),使,若直線上的點(diǎn)的“伴侶點(diǎn)”,求的取值范圍;

3)點(diǎn)的派生點(diǎn)在直線,求點(diǎn)上任意一點(diǎn)距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtADE中,DAE=90°,C是邊AE上任意一點(diǎn)(點(diǎn)C與點(diǎn)A、E不重合),以AC為一直角邊在RtADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.

(1)在圖1中,若AC=AB,AE=AD,現(xiàn)將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖2,那么線段BE.CD之間有怎樣的關(guān)系,寫(xiě)出結(jié)論,并說(shuō)明理由;

(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖3,連接BD、CE.

求證:△ABE∽△ACD;

計(jì)算:BD2+CE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中作圖:①分別以點(diǎn)BC為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交AD于點(diǎn)H,G;②分別以點(diǎn)B,C為圓心,大于BC的一半長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)E,F;③作直線EF,交AD于點(diǎn)P.下列結(jié)論不一定成立的是(

A.BCBHB.CGAD

C.PBPCD.GH2AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張騎自行車(chē)勻速?gòu)募椎氐揭业,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車(chē)比小張晚出發(fā)一段時(shí)間,以800/分的速度勻速?gòu)囊业氐郊椎兀瑑扇司嚯x乙地的路程()與小張出發(fā)后的時(shí)間 ()之間的函數(shù)圖象如圖所示.

(1)求小張騎自行車(chē)的速度;

(2)求小張停留后再出發(fā)時(shí)之間的函數(shù)表達(dá)式:.

(3)求小張與小李相遇時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案