【題目】下列說法正確的是( 。
A. 了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調(diào)查
B. 甲、乙兩人跳遠(yuǎn)成績的方差分別為,,說明乙的跳遠(yuǎn)成績比甲穩(wěn)定
C. 一組數(shù)據(jù)2,2,3,4的眾數(shù)是2,中位數(shù)是2.5
D. 可能性是1%的事件在一次試驗(yàn)中一定不會(huì)發(fā)生
【答案】C
【解析】
全面調(diào)查與抽樣調(diào)查的優(yōu)缺點(diǎn):全面調(diào)查收集的數(shù)據(jù)全面、準(zhǔn)確,但一般花費(fèi)多、耗時(shí)長,而且某些調(diào)查不宜用全面調(diào)查.抽樣調(diào)查具有花費(fèi)少、省時(shí)的特點(diǎn),但抽取的樣本是否具有代表性,直接關(guān)系到對總體估計(jì)的準(zhǔn)確程度.將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕校绻麛(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),中間兩數(shù)的平均數(shù)就是中位數(shù),一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).
解:A.了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合抽樣調(diào)查,A錯(cuò)誤;
B.甲、乙兩人跳遠(yuǎn)成績的方差分別為,,說明甲的跳遠(yuǎn)成績比乙穩(wěn)定,B錯(cuò)誤;
C.一組數(shù)據(jù),,,的眾數(shù)是,中位數(shù)是,正確;
D.可能性是的事件在一次試驗(yàn)中可能會(huì)發(fā)生,D錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a = ,b= ,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,拋物線()與直線交于點(diǎn)、(點(diǎn)在點(diǎn)右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點(diǎn)分別為點(diǎn)、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degree of surprise),記作.
(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點(diǎn)坐標(biāo) ,點(diǎn)坐標(biāo) ,驚喜四邊形屬于所學(xué)過的哪種特殊平行四邊形? ,為 .
(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.
(3)如果拋物線沿直線翻折后所得的驚喜線在時(shí),其最高點(diǎn)的縱坐標(biāo)為16,求的值并直接寫出驚喜度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的外接圓,連結(jié)OA、OB、OC,延長BO與AC交于點(diǎn)D,與交于點(diǎn)F,延長BA到點(diǎn)G,使得,連接FG.
備用圖
(1)求證:FG是的切線;
(2)若的半徑為4.
①當(dāng),求AD的長度;
②當(dāng)是直角三角形時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.
(1)求坡底C點(diǎn)到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中,裝有除顏色外都完全相同的4個(gè)紅球和若干個(gè)黃球.
如果從袋中任意摸出一個(gè)球是紅球的概率為,那么袋中有黃球多少個(gè)?
在的條件下如果從袋中摸出一個(gè)球記下顏色后放回,再摸出一個(gè)球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點(diǎn)D,過點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;
(3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com