【題目】已知點(diǎn)O是AB上的一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)如圖1,當(dāng)點(diǎn)C,E,F在直線AB的同一側(cè)時(shí),若∠AOC=40°,求∠BOE和∠COF的度數(shù);
(2)在(1)的條件下,∠BOE和∠COF有什么數(shù)量關(guān)系?請(qǐng)直接寫出結(jié)論,不必說明理由;
(3)如圖2,當(dāng)點(diǎn)C,E,F分別在直線AB的兩側(cè)時(shí),若∠AOC=β,那么(2)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)寫出結(jié)論,并說明理由.
【答案】(1) ∠COF=25°, ∠BOE=50°;(2) ∠BOE=2∠COF;(3) ∠BOE=2∠COF,理由見解析
【解析】
(1)求出∠BOE和∠COF的度數(shù)即可判斷;
(2)由(1)即可求解;
(3)結(jié)論:∠BOE=2∠COF.根據(jù)角的和差定義即可解決問題.
解:(1)∵∠COE=90°,∠AOC=40°,
∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣40°﹣90°=50°,
∠AOE=∠AOC+∠COE=40°+90°=130°,
∵OF平分∠AOE,
∴∠EOF=∠AOE=×130°=65°,
∴∠COF=∠COE﹣∠EOF=90°﹣65°=25°;
(2)∠BOE=2∠COF.
(3)∠BOE=2∠COF.
理由如下:∵∠COE=90°,∠AOC=β,
∴∠AOE=∠COE﹣∠AOC=90°﹣β,
∴∠BOE=180°﹣∠AOE=180°﹣(90°﹣β)=90°+β,
∵OF平分∠AOE,
∴∠AOF=∠AOE=(90°﹣β)=45°﹣β,
∴∠COF=β+(45°﹣β)=45°+β,
∴2∠COF=2(45°+β)=90°+β,
∴∠BOE=2∠COF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,點(diǎn)A為中點(diǎn),BD為直徑,過A作AP∥BC交DB的延長線于點(diǎn)P.
(Ⅰ)求證:PA是⊙O的切線;
(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道“群羊逐草”的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:“你的羊群有100只嗎?”甲答:“如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是( 。
A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB、a、b.
(1)請(qǐng)用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)
①延長線段AB到C,使BC=a;
②反向延長線段AB到D,使AD=b.
(2)在(1)的條件下,如果AB=8cm,a=6m,b=10cm,且點(diǎn)E為CD的中點(diǎn),求線段AE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,E為AD上的一點(diǎn),連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.H為FG的中點(diǎn),連接DH.
(1)求證:四邊形AFHD為平行四邊形;
(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的有( )
A.1個(gè) B.2 個(gè) C.3 個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為6的正方形,點(diǎn)E在邊AB上,BE=4,過點(diǎn)E作EF∥BC,分別交BD,CD于點(diǎn)G,F兩點(diǎn),若M,N分別是DG,CE的中點(diǎn),則MN的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com