【題目】如圖,四邊形ABCD為平行四邊形,E為AD上的一點(diǎn),連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.H為FG的中點(diǎn),連接DH.
(1)求證:四邊形AFHD為平行四邊形;
(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度數(shù).
【答案】(1)證明見解析;
(2)∠CBE=70°.
【解析】
(1)證明AD∥BC,AD=BC,FH∥BC,FH=BC;
(2)∠CBE是等腰△CBE的底角,求出頂角∠ECD即可.
(1)證明:∵BF=BE,CG=CE,
∴BC∥FG,BC=FG
又∵H是FG的中點(diǎn),
∴FH∥FG,FH=FG,
∴BC∥FH,且BC=FH,
又∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴AD∥FH,
∴四邊形AFHD是平行四邊形;
(2)∵四邊形ABCD是平行四邊形,∠BAE=60°,
∴∠BAE=∠DCB=60°,
又∵∠DCE=20°,
∴∠ECB=∠DCB-∠DCE=60°-20°=40°,
∵CE=CB,
∴∠CBE=∠BEC=(180°-∠ECB)=(180°-40°)=70°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次聯(lián)結(jié)對角線互相垂直的等腰梯形各邊中點(diǎn)所得的四邊形是( )
A. 平行四邊形B. 矩形C. 菱形D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)M、N分別為AD、BC的中點(diǎn),點(diǎn)E、F分別是BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM.
(2)四邊形MENF是什么圖形?請證明你的結(jié)論.
(3)若四邊形MENF是正方形,則梯形的高與底邊BC有何數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于有理數(shù)a,b,定義一種新運(yùn)算“⊙”,規(guī)定a⊙b=|a+b|+|a﹣b|.
(1)計(jì)算2⊙(﹣3)的值;
(2)當(dāng)a,b在數(shù)軸上的位置如圖所示時,化簡a⊙b;
(3)已知(a⊙a)⊙a=8+a,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是AB上的一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)如圖1,當(dāng)點(diǎn)C,E,F在直線AB的同一側(cè)時,若∠AOC=40°,求∠BOE和∠COF的度數(shù);
(2)在(1)的條件下,∠BOE和∠COF有什么數(shù)量關(guān)系?請直接寫出結(jié)論,不必說明理由;
(3)如圖2,當(dāng)點(diǎn)C,E,F分別在直線AB的兩側(cè)時,若∠AOC=β,那么(2)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?請寫出結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,若DF⊥AC,∠ADF:∠FDC=3:2,則∠BDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)計(jì)劃根據(jù)學(xué)生的興趣愛好組建課外興趣小組,并隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請根據(jù)圖中的信息,完成下列問題:
學(xué)校這次調(diào)查共抽取了 名學(xué)生;
求的值并補(bǔ)全條形統(tǒng)計(jì)圖;
在扇形統(tǒng)計(jì)圖中,“圍棋”所在扇形的圓心角度數(shù)為 ;
設(shè)該校共有學(xué)生名,請你估計(jì)該校有多少名學(xué)生喜歡足球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在和中給出4個論斷:①;②;③;④,;現(xiàn)將4個論斷分別粘貼在四個學(xué)生的后背上,進(jìn)行如下游戲:其中三個學(xué)生站在講臺的左邊,另一個學(xué)生站在講臺的右邊,要求以三個學(xué)生后背上的部分論斷作為題設(shè),另一個學(xué)生后背上的論斷作為結(jié)論,使之成為一個真命題或題目,這個游戲可進(jìn)行幾輪?并對其中的一種情況進(jìn)行證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com