【題目】順次聯(lián)結(jié)對角線互相垂直的等腰梯形各邊中點所得的四邊形是( )
A. 平行四邊形B. 矩形C. 菱形D. 正方形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,點D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點M、N、P分別是BE、CD、BC的中點.
(1)觀察猜想:圖1中,△PMN的形狀是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,△PMN的形狀是否發(fā)生改變?并說明理由;
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=1,AB=3,請直接寫出△PMN的周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在平面直角坐標系中 ,已知二次函數(shù)y=ax2+bx+c (a≠0)
的圖象經(jīng)過 A(-1,0),B(3,0),C(6,4)三點.
(1)求此二次函數(shù)解析式和頂點 D 的坐標;
(2)①E為拋物線對稱軸上一點,過點E作FG//x 軸,分別交拋物線于F、G兩點 ,若,求點E的坐標;
② 若拋物線對稱軸上點 H 到直線 BC 的距離等于點 H 到 x 軸的距離,則求出點 H
的坐標;
(3)在(2)的條件下,以點I(1,)為圓心,IH 的長為半徑作⊙I,J 為⊙I上的動點,求是否存在一個定值,使得 CJ+EJ 的最小值是若不存在,請說明理由.若存在,請求出的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把 6個相同的小正方體擺成如圖的幾何體.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)如果每個小正方體棱長為,則該幾何體的表面積是 .
(3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們,我們知道圖形是由點、線、面組成,結(jié)合具體實例,已經(jīng)感受到“點動成線,線動成面”的現(xiàn)象,下面我們一起來進一步探究:
(概念認識)
已知點P和圖形M,點B是圖形M上任意一點,我們把線段PB長度的最小值叫做點P與圖形M之間的距離.
例如,以點M為圓心,1cm為半徑畫圓如圖1,那么點M到該圓的距離等于1cm;若點N是圓上一點,那么點N到該圓的距離等于0cm;連接MN,若點Q為線段MN中點,那么點Q到該圓的距離等于0.5cm,反過來,若點P到已知點M的距離等于1cm,那么滿足條件的所有點P就構(gòu)成了以點M為圓心,1cm為半徑的圓.
(初步運用)
(1)如圖2,若點P到已知直線m的距離等于1cm,請畫出滿足條件的所有點P.
(深入探究)
(2)如圖3,若點P到已知線段的距離等于1cm,請畫出滿足條件的所有點P.
(3)如圖4,若點P到已知正方形的距離等于1cm,請畫出滿足條件的所有點P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,點A為中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.
(Ⅰ)求證:PA是⊙O的切線;
(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過畫圖,尋找對頂角和鄰補角(不含平角):
(1)若2條直線相交于一點,則有_____________對對頂角,_____________對鄰補角.
(2)若3條直線相交于同一點,則有_____________對對頂角,_____________對鄰補角.
(3)若4條直線相交于同一點,則有______________對對頂角,__________________對鄰補角.
(4)通過(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關(guān)系,若有n條直線相交于同一點,則可形成___________對對頂角,___________對鄰補角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線的圖象經(jīng)過點,交x軸于點A、點在B點左側(cè),頂點為D.
求拋物線的解析式及點A、B的坐標;
將沿直線BC對折,點A的對稱點為,試求的坐標;
拋物線的對稱軸上是否存在點P,使?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,E為AD上的一點,連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.H為FG的中點,連接DH.
(1)求證:四邊形AFHD為平行四邊形;
(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com