【題目】如圖,點(diǎn)是線段上除外任意一點(diǎn),分別以、為邊在線段的同旁作等邊和等邊,連接,連接,連接.

1)求證:;

2)求證:.

【答案】1)證明見詳解;(2)證明見詳解.

【解析】

出現(xiàn)兩個(gè)等邊三角形證全等時(shí),往往要考慮兩個(gè)三角形的公共角.

證明:∵△ACD和△BCE是等邊三角形,

AC=DCCE=CB,∠DCA=60°,∠ECB=60°,

∵∠DCA=ECB=60°,

∴∠DCA+DCE=ECB+DCE,∠ACE=DCB,
在△ACE與△DCB中,

∴△ACE≌△DCB(SAS),
AE=BD

(2)MNC是等邊三角形.理由如下:

∵由(1)得,△ACE≌△DCB,

∴∠CAM=CDN,

∵∠ACD=ECB=60°,而A、C、B三點(diǎn)共線,

∴∠DCN=60°,

在△ACM與△DCN中,

∴△ACM≌△DCN(ASA),

MC=NC

∵∠MCN=60°,

∴△MCN為等邊三角形.

∴∠MCA=CMN=60°

MNAB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,∠B<∠C,ADAE分別是ABC的高和角平分線,

1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)

2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點(diǎn)E在邊CD上,且CD3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:ABG≌△AFG;BGGCAGCF;SFGC3.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1 ;

2;

3

4;

5;

6;

7

8;

9

10;

1120032

12;

13;

14

15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).

1)求⊙O的半徑OA的長;

2)計(jì)算陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:已知點(diǎn)A,點(diǎn)B,直線ll上一點(diǎn)M.

1)如圖1,連接MA,并在直線l上作出一點(diǎn)N,使得點(diǎn)N在點(diǎn)M的左邊,且滿足MN=MA,作線段MN的中點(diǎn)C,連接BC;

2)如圖2,請?jiān)谥本l上確定一點(diǎn)O,使點(diǎn)O到點(diǎn)A與點(diǎn)O到點(diǎn)B的距離之和最短,并寫出畫圖的依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCCDE是以C為公共頂點(diǎn)的兩個(gè)等腰三角形,且AC=CB,CD=CE,連接BDAE相交于點(diǎn)M,連接CM,∠CAB=CDE=50°,則∠BMC=

A. 30°B. 40°C. 50°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BCAC邊上,且BE=CFBD=CE.

1)求證:DEF是等腰三角形;

2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩個(gè)黑布袋,A布袋中有四個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2,3;B布袋中有三個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2.小明先從A布袋中隨機(jī)取出一個(gè)小球,m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個(gè)小球,n表示取出的球上標(biāo)有的數(shù)字.若用(m,n)表示小明取球時(shí)mn的對應(yīng)值,則使關(guān)于x的一元二次方程x2-mx+n=0有實(shí)數(shù)根的概率為__.

查看答案和解析>>

同步練習(xí)冊答案