【題目】作圖題:已知點A,點B,直線l及l上一點M.
(1)如圖1,連接MA,并在直線l上作出一點N,使得點N在點M的左邊,且滿足MN=MA,作線段MN的中點C,連接BC;
(2)如圖2,請在直線l上確定一點O,使點O到點A與點O到點B的距離之和最短,并寫出畫圖的依據(jù).
科目:初中數(shù)學 來源: 題型:
【題目】今年3月12日植樹節(jié),美華中學為了進一步綠化學校,計劃購買甲、乙兩種樹苗共計50棵.設購買甲種樹苗棵,有關甲、乙兩種樹苗的信息如下:甲種樹苗每棵50元,乙種樹苗每棵80元;甲種樹苗的成活率為90%,乙種樹苗的成活率為95%.
(1)根據(jù)信息填表(用含的式子表示):
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購買樹苗的數(shù)量(單位:棵) | ||
購買樹苗的費用(單位:元) |
(2)如果購買甲、乙兩種樹苗共用去2560元,那么甲、乙兩種樹苗各購買了多少棵?
(3)如果要使這批樹苗的成活率不低于92%,請設計一種購買甲、乙樹苗的方案,使購買甲、乙兩種樹苗的費用最少,寫出購買方案并計算出購買甲、乙兩種樹苗的總費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為直線AB上一點,∠AOC=48°,OD平分∠AOC,OE⊥OD交于點O.
(1)求出∠BOD的度數(shù);
(2)試用計算說明∠COE=∠BOE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點E從D點出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點F從點C出發(fā),以每秒1個單位的速度沿CB向點B作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動,假設移動時間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時的移動時間t和G點的移動距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A,B,C,D四點在同一條直線上,點C是線段AB的中點,點D在線段AB上.
(1)如圖1,若AB=12,BD=BC,求線段CD的長度;
(2)如圖2,點E是線段AB上一點,且AE=2BE,當3AD=2BD時,探究線段CD與CE之間的數(shù)量關系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳高級中學(集團)開展“陽光體育活動”,共開設足球,藍球,乒乓球,羽毛球,網(wǎng)球五項活動,為了了解學生對這五項活動的喜愛情況,隨機調(diào)查了m名學生(每名學生必須且只能選擇這五項運動中的一種),并根據(jù)調(diào)查的結(jié)果繪制了如圖所示不完整的統(tǒng)計圖.根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:
(1)m= ,n= ;
(2)補全條形統(tǒng)計圖;
(3)若深高(集團)共有學生6000人,則喜歡乒乓球的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:在下面兩種條件下,線段BM、MN、NC之間的關系,并加以證明.
①AN=NC(如圖②); 、DM//AC(如圖③).
思考:若點M、N分別是射線AB、CA上的點,其它條件不變,再探線段BM、MN、NC之間的關系,在圖④中畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,AE=1,若點P為對角線BD上的一個動點,則△PAE周長的最小值是( 。
A.3B.4C.5D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com