【題目】解決下列兩個(gè)問(wèn)題:

(1)如圖1,在△ABC中,AB4,AC6BC7,EF垂直平分BC,P為直線(xiàn)EF上一動(dòng)點(diǎn),PA+PB的最小值為______,并在圖中標(biāo)出當(dāng)PA+PB取最小值時(shí)點(diǎn)P的位置.

(2)如圖2,點(diǎn)M、N在∠BAC的內(nèi)部,請(qǐng)?jiān)凇?/span>BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PMPN.(尺規(guī)作圖,保留作圖痕跡,無(wú)需證明)

【答案】(1)6,圖形見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)根據(jù)垂直平分線(xiàn)的性質(zhì)得,因此,再根據(jù)三角形的三邊關(guān)系得,,故當(dāng)點(diǎn)PAC邊上,取最小值AC,即取最小值;

2)畫(huà)的角平分線(xiàn)和線(xiàn)段MN的垂直平分線(xiàn),兩條線(xiàn)相交于點(diǎn)P即為所求作的點(diǎn).

(1)根據(jù)垂直平分線(xiàn)的性質(zhì)得,則

中,根據(jù)三角形的三邊關(guān)系得,

故當(dāng)點(diǎn)PAC邊上,取最小值AC

即當(dāng)點(diǎn)PAC邊上,取得最小值,此時(shí)

答:的最小值為6,此時(shí)點(diǎn)P的位置如圖1所示.

(2)由題意得,畫(huà)的角平分線(xiàn)和線(xiàn)段MN的垂直平分線(xiàn),兩條線(xiàn)相交于點(diǎn)P即為所求作的點(diǎn).如圖2所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線(xiàn)EF分別交ABAC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形 ABC 中,點(diǎn) D,E 分別在邊 BCAC 上,且 BD=CEAD BE相交于點(diǎn) P,則∠APE 的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為7的正方形ABCD中放入五個(gè)小正方形后形成一個(gè)中心對(duì)稱(chēng)圖形,其中兩頂點(diǎn)E、F分別在邊BC、AD上,則放入的五個(gè)小正方形的面積之和為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在RtABC中,∠C90°,點(diǎn)D是線(xiàn)段CA延長(zhǎng)線(xiàn)上一點(diǎn),且ADAB,點(diǎn)F是線(xiàn)段AB上一點(diǎn),連接DF,以DF為斜邊作等腰RtDFE,連接EA,EA滿(mǎn)足條件EAAB,

(1)若∠AEF20°,∠ADE50°,BC2,求AB的長(zhǎng)度.

(2)求證:AEAF+BC.

(3)如圖2,點(diǎn)F是線(xiàn)段BA延長(zhǎng)線(xiàn)上一點(diǎn),探究AE、AF、BC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.

1)求平均每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B=∠C90°,EBC的中點(diǎn),DE平分∠ADC

1)求證:AE平分∠DAB;

2)若AD8,BC6,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案